martin
initial
67c46fd
raw
history blame
5.03 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Layer normalization module."""
import torch
import torch.nn as nn
class LayerNorm(torch.nn.LayerNorm):
"""Layer normalization module.
Args:
nout (int): Output dim size.
dim (int): Dimension to be normalized.
"""
def __init__(self, nout, dim=-1):
"""Construct an LayerNorm object."""
super(LayerNorm, self).__init__(nout, eps=1e-12)
self.dim = dim
def forward(self, x):
"""Apply layer normalization.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Normalized tensor.
"""
if self.dim == -1:
return super(LayerNorm, self).forward(x)
return (
super(LayerNorm, self)
.forward(x.transpose(self.dim, -1))
.transpose(self.dim, -1)
)
class GlobalLayerNorm(nn.Module):
"""Calculate Global Layer Normalization.
Arguments
---------
dim : (int or list or torch.Size)
Input shape from an expected input of size.
eps : float
A value added to the denominator for numerical stability.
elementwise_affine : bool
A boolean value that when set to True,
this module has learnable per-element affine parameters
initialized to ones (for weights) and zeros (for biases).
Example
-------
>>> x = torch.randn(5, 10, 20)
>>> GLN = GlobalLayerNorm(10, 3)
>>> x_norm = GLN(x)
"""
def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True):
super(GlobalLayerNorm, self).__init__()
self.dim = dim
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
if shape == 3:
self.weight = nn.Parameter(torch.ones(self.dim, 1))
self.bias = nn.Parameter(torch.zeros(self.dim, 1))
if shape == 4:
self.weight = nn.Parameter(torch.ones(self.dim, 1, 1))
self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
def forward(self, x):
"""Returns the normalized tensor.
Arguments
---------
x : torch.Tensor
Tensor of size [N, C, K, S] or [N, C, L].
"""
# x = N x C x K x S or N x C x L
# N x 1 x 1
# cln: mean,var N x 1 x K x S
# gln: mean,var N x 1 x 1
if x.dim() == 3:
mean = torch.mean(x, (1, 2), keepdim=True)
var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True)
if self.elementwise_affine:
x = self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias
else:
x = (x - mean) / torch.sqrt(var + self.eps)
if x.dim() == 4:
mean = torch.mean(x, (1, 2, 3), keepdim=True)
var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True)
if self.elementwise_affine:
x = self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias
else:
x = (x - mean) / torch.sqrt(var + self.eps)
return x
class CumulativeLayerNorm(nn.LayerNorm):
"""Calculate Cumulative Layer Normalization.
Arguments
---------
dim : int
Dimension that you want to normalize.
elementwise_affine : True
Learnable per-element affine parameters.
Example
-------
>>> x = torch.randn(5, 10, 20)
>>> CLN = CumulativeLayerNorm(10)
>>> x_norm = CLN(x)
"""
def __init__(self, dim, elementwise_affine=True):
super(CumulativeLayerNorm, self).__init__(
dim, elementwise_affine=elementwise_affine, eps=1e-8
)
def forward(self, x):
"""Returns the normalized tensor.
Arguments
---------
x : torch.Tensor
Tensor size [N, C, K, S] or [N, C, L]
"""
# x: N x C x K x S or N x C x L
# N x K x S x C
if x.dim() == 4:
x = x.permute(0, 2, 3, 1).contiguous()
# N x K x S x C == only channel norm
x = super().forward(x)
# N x C x K x S
x = x.permute(0, 3, 1, 2).contiguous()
if x.dim() == 3:
x = torch.transpose(x, 1, 2)
# N x L x C == only channel norm
x = super().forward(x)
# N x C x L
x = torch.transpose(x, 1, 2)
return x
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.scale = dim**-0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(1))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g