Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Subsampling layer definition.""" | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from funasr_detach.models.transformer.embedding import PositionalEncoding | |
import logging | |
from funasr_detach.models.scama.utils import sequence_mask | |
from funasr_detach.models.transformer.utils.nets_utils import ( | |
sub_factor_to_params, | |
pad_to_len, | |
) | |
from typing import Optional, Tuple, Union | |
import math | |
class TooShortUttError(Exception): | |
"""Raised when the utt is too short for subsampling. | |
Args: | |
message (str): Message for error catch | |
actual_size (int): the short size that cannot pass the subsampling | |
limit (int): the limit size for subsampling | |
""" | |
def __init__(self, message, actual_size, limit): | |
"""Construct a TooShortUttError for error handler.""" | |
super().__init__(message) | |
self.actual_size = actual_size | |
self.limit = limit | |
def check_short_utt(ins, size): | |
"""Check if the utterance is too short for subsampling.""" | |
if isinstance(ins, Conv2dSubsampling2) and size < 3: | |
return True, 3 | |
if isinstance(ins, Conv2dSubsampling) and size < 7: | |
return True, 7 | |
if isinstance(ins, Conv2dSubsampling6) and size < 11: | |
return True, 11 | |
if isinstance(ins, Conv2dSubsampling8) and size < 15: | |
return True, 15 | |
return False, -1 | |
class Conv2dSubsampling(torch.nn.Module): | |
"""Convolutional 2D subsampling (to 1/4 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
pos_enc (torch.nn.Module): Custom position encoding layer. | |
""" | |
def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
"""Construct an Conv2dSubsampling object.""" | |
super(Conv2dSubsampling, self).__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 2), | |
torch.nn.ReLU(), | |
) | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim), | |
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
) | |
def forward(self, x, x_mask): | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 4. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 4. | |
""" | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
if x_mask is None: | |
return x, None | |
return x, x_mask[:, :, :-2:2][:, :, :-2:2] | |
def __getitem__(self, key): | |
"""Get item. | |
When reset_parameters() is called, if use_scaled_pos_enc is used, | |
return the positioning encoding. | |
""" | |
if key != -1: | |
raise NotImplementedError("Support only `-1` (for `reset_parameters`).") | |
return self.out[key] | |
class Conv2dSubsamplingPad(torch.nn.Module): | |
"""Convolutional 2D subsampling (to 1/4 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
pos_enc (torch.nn.Module): Custom position encoding layer. | |
""" | |
def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
"""Construct an Conv2dSubsampling object.""" | |
super(Conv2dSubsamplingPad, self).__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2, padding=(0, 0)), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 2, padding=(0, 0)), | |
torch.nn.ReLU(), | |
) | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim), | |
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
) | |
self.pad_fn = torch.nn.ConstantPad1d((0, 4), 0.0) | |
def forward(self, x, x_mask): | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 4. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 4. | |
""" | |
x = x.transpose(1, 2) | |
x = self.pad_fn(x) | |
x = x.transpose(1, 2) | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
if x_mask is None: | |
return x, None | |
x_len = torch.sum(x_mask[:, 0, :], dim=-1) | |
x_len = (x_len - 1) // 2 + 1 | |
x_len = (x_len - 1) // 2 + 1 | |
mask = sequence_mask(x_len, None, x_len.dtype, x[0].device) | |
return x, mask[:, None, :] | |
def __getitem__(self, key): | |
"""Get item. | |
When reset_parameters() is called, if use_scaled_pos_enc is used, | |
return the positioning encoding. | |
""" | |
if key != -1: | |
raise NotImplementedError("Support only `-1` (for `reset_parameters`).") | |
return self.out[key] | |
class Conv2dSubsampling2(torch.nn.Module): | |
"""Convolutional 2D subsampling (to 1/2 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
pos_enc (torch.nn.Module): Custom position encoding layer. | |
""" | |
def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
"""Construct an Conv2dSubsampling2 object.""" | |
super(Conv2dSubsampling2, self).__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 1), | |
torch.nn.ReLU(), | |
) | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(odim * (((idim - 1) // 2 - 2)), odim), | |
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
) | |
def forward(self, x, x_mask): | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 2. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 2. | |
""" | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
if x_mask is None: | |
return x, None | |
return x, x_mask[:, :, :-2:2][:, :, :-2:1] | |
def __getitem__(self, key): | |
"""Get item. | |
When reset_parameters() is called, if use_scaled_pos_enc is used, | |
return the positioning encoding. | |
""" | |
if key != -1: | |
raise NotImplementedError("Support only `-1` (for `reset_parameters`).") | |
return self.out[key] | |
class Conv2dSubsampling6(torch.nn.Module): | |
"""Convolutional 2D subsampling (to 1/6 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
pos_enc (torch.nn.Module): Custom position encoding layer. | |
""" | |
def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
"""Construct an Conv2dSubsampling6 object.""" | |
super(Conv2dSubsampling6, self).__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 5, 3), | |
torch.nn.ReLU(), | |
) | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim), | |
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
) | |
def forward(self, x, x_mask): | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 6. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 6. | |
""" | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
if x_mask is None: | |
return x, None | |
return x, x_mask[:, :, :-2:2][:, :, :-4:3] | |
class Conv2dSubsampling8(torch.nn.Module): | |
"""Convolutional 2D subsampling (to 1/8 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
pos_enc (torch.nn.Module): Custom position encoding layer. | |
""" | |
def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
"""Construct an Conv2dSubsampling8 object.""" | |
super(Conv2dSubsampling8, self).__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 2), | |
torch.nn.ReLU(), | |
) | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim), | |
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
) | |
def forward(self, x, x_mask): | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 8. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 8. | |
""" | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
if x_mask is None: | |
return x, None | |
return x, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2] | |
class Conv1dSubsampling(torch.nn.Module): | |
"""Convolutional 1D subsampling (to 1/2 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
pos_enc (torch.nn.Module): Custom position encoding layer. | |
""" | |
def __init__( | |
self, | |
idim, | |
odim, | |
kernel_size, | |
stride, | |
pad, | |
tf2torch_tensor_name_prefix_torch: str = "stride_conv", | |
tf2torch_tensor_name_prefix_tf: str = "seq2seq/proj_encoder/downsampling", | |
): | |
super(Conv1dSubsampling, self).__init__() | |
self.conv = torch.nn.Conv1d(idim, odim, kernel_size, stride) | |
self.pad_fn = torch.nn.ConstantPad1d(pad, 0.0) | |
self.stride = stride | |
self.odim = odim | |
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
def output_size(self) -> int: | |
return self.odim | |
def forward(self, x, x_len): | |
"""Subsample x.""" | |
x = x.transpose(1, 2) # (b, d ,t) | |
x = self.pad_fn(x) | |
# x = F.relu(self.conv(x)) | |
x = F.leaky_relu(self.conv(x), negative_slope=0.0) | |
x = x.transpose(1, 2) # (b, t ,d) | |
if x_len is None: | |
return x, None | |
x_len = (x_len - 1) // self.stride + 1 | |
return x, x_len | |
def gen_tf2torch_map_dict(self): | |
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
map_dict_local = { | |
## predictor | |
"{}.conv.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/conv1d/kernel".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": (2, 1, 0), | |
}, # (256,256,3),(3,256,256) | |
"{}.conv.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/conv1d/bias".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
} | |
return map_dict_local | |
def convert_tf2torch( | |
self, | |
var_dict_tf, | |
var_dict_torch, | |
): | |
map_dict = self.gen_tf2torch_map_dict() | |
var_dict_torch_update = dict() | |
for name in sorted(var_dict_torch.keys(), reverse=False): | |
names = name.split(".") | |
if names[0] == self.tf2torch_tensor_name_prefix_torch: | |
name_tf = map_dict[name]["name"] | |
data_tf = var_dict_tf[name_tf] | |
if map_dict[name]["squeeze"] is not None: | |
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"]) | |
if map_dict[name]["transpose"] is not None: | |
data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape | |
) | |
) | |
return var_dict_torch_update | |
class StreamingConvInput(torch.nn.Module): | |
"""Streaming ConvInput module definition. | |
Args: | |
input_size: Input size. | |
conv_size: Convolution size. | |
subsampling_factor: Subsampling factor. | |
vgg_like: Whether to use a VGG-like network. | |
output_size: Block output dimension. | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
conv_size: Union[int, Tuple], | |
subsampling_factor: int = 4, | |
vgg_like: bool = True, | |
conv_kernel_size: int = 3, | |
output_size: Optional[int] = None, | |
) -> None: | |
"""Construct a ConvInput object.""" | |
super().__init__() | |
if vgg_like: | |
if subsampling_factor == 1: | |
conv_size1, conv_size2 = conv_size | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d( | |
1, | |
conv_size1, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size1, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.MaxPool2d((1, 2)), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size2, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size2, | |
conv_size2, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.MaxPool2d((1, 2)), | |
) | |
output_proj = conv_size2 * ((input_size // 2) // 2) | |
self.subsampling_factor = 1 | |
self.stride_1 = 1 | |
self.create_new_mask = self.create_new_vgg_mask | |
else: | |
conv_size1, conv_size2 = conv_size | |
kernel_1 = int(subsampling_factor / 2) | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d( | |
1, | |
conv_size1, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size1, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.MaxPool2d((kernel_1, 2)), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size2, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size2, | |
conv_size2, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.MaxPool2d((2, 2)), | |
) | |
output_proj = conv_size2 * ((input_size // 2) // 2) | |
self.subsampling_factor = subsampling_factor | |
self.create_new_mask = self.create_new_vgg_mask | |
self.stride_1 = kernel_1 | |
else: | |
if subsampling_factor == 1: | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, conv_size, 3, [1, 2], [1, 0]), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size, conv_size, conv_kernel_size, [1, 2], [1, 0] | |
), | |
torch.nn.ReLU(), | |
) | |
output_proj = conv_size * (((input_size - 1) // 2 - 1) // 2) | |
self.subsampling_factor = subsampling_factor | |
self.kernel_2 = conv_kernel_size | |
self.stride_2 = 1 | |
self.create_new_mask = self.create_new_conv2d_mask | |
else: | |
kernel_2, stride_2, conv_2_output_size = sub_factor_to_params( | |
subsampling_factor, | |
input_size, | |
) | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, conv_size, 3, 2, [1, 0]), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size, | |
conv_size, | |
kernel_2, | |
stride_2, | |
[(kernel_2 - 1) // 2, 0], | |
), | |
torch.nn.ReLU(), | |
) | |
output_proj = conv_size * conv_2_output_size | |
self.subsampling_factor = subsampling_factor | |
self.kernel_2 = kernel_2 | |
self.stride_2 = stride_2 | |
self.create_new_mask = self.create_new_conv2d_mask | |
self.vgg_like = vgg_like | |
self.min_frame_length = 7 | |
if output_size is not None: | |
self.output = torch.nn.Linear(output_proj, output_size) | |
self.output_size = output_size | |
else: | |
self.output = None | |
self.output_size = output_proj | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
chunk_size: Optional[torch.Tensor], | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encode input sequences. | |
Args: | |
x: ConvInput input sequences. (B, T, D_feats) | |
mask: Mask of input sequences. (B, 1, T) | |
Returns: | |
x: ConvInput output sequences. (B, sub(T), D_out) | |
mask: Mask of output sequences. (B, 1, sub(T)) | |
""" | |
if mask is not None: | |
mask = self.create_new_mask(mask) | |
olens = max(mask.eq(0).sum(1)) | |
b, t, f = x.size() | |
x = x.unsqueeze(1) # (b. 1. t. f) | |
if chunk_size is not None: | |
max_input_length = int( | |
chunk_size | |
* self.subsampling_factor | |
* (math.ceil(float(t) / (chunk_size * self.subsampling_factor))) | |
) | |
x = map(lambda inputs: pad_to_len(inputs, max_input_length, 1), x) | |
x = list(x) | |
x = torch.stack(x, dim=0) | |
N_chunks = max_input_length // (chunk_size * self.subsampling_factor) | |
x = x.view(b * N_chunks, 1, chunk_size * self.subsampling_factor, f) | |
x = self.conv(x) | |
_, c, _, f = x.size() | |
if chunk_size is not None: | |
x = x.transpose(1, 2).contiguous().view(b, -1, c * f)[:, :olens, :] | |
else: | |
x = x.transpose(1, 2).contiguous().view(b, -1, c * f) | |
if self.output is not None: | |
x = self.output(x) | |
return x, mask[:, :olens][:, : x.size(1)] | |
def create_new_vgg_mask(self, mask: torch.Tensor) -> torch.Tensor: | |
"""Create a new mask for VGG output sequences. | |
Args: | |
mask: Mask of input sequences. (B, T) | |
Returns: | |
mask: Mask of output sequences. (B, sub(T)) | |
""" | |
if self.subsampling_factor > 1: | |
vgg1_t_len = mask.size(1) - (mask.size(1) % (self.subsampling_factor // 2)) | |
mask = mask[:, :vgg1_t_len][:, :: self.subsampling_factor // 2] | |
vgg2_t_len = mask.size(1) - (mask.size(1) % 2) | |
mask = mask[:, :vgg2_t_len][:, ::2] | |
else: | |
mask = mask | |
return mask | |
def create_new_conv2d_mask(self, mask: torch.Tensor) -> torch.Tensor: | |
"""Create new conformer mask for Conv2d output sequences. | |
Args: | |
mask: Mask of input sequences. (B, T) | |
Returns: | |
mask: Mask of output sequences. (B, sub(T)) | |
""" | |
if self.subsampling_factor > 1: | |
return mask[:, ::2][:, :: self.stride_2] | |
else: | |
return mask | |
def get_size_before_subsampling(self, size: int) -> int: | |
"""Return the original size before subsampling for a given size. | |
Args: | |
size: Number of frames after subsampling. | |
Returns: | |
: Number of frames before subsampling. | |
""" | |
return size * self.subsampling_factor | |