Step-Audio / funasr_detach /train_utils /load_pretrained_model.py
martin
initial
67c46fd
raw
history blame
5.08 kB
from typing import Any
from typing import Dict
from typing import Union
from io import BytesIO
import logging
import torch
import torch.nn
import torch.optim
def filter_state_dict(
dst_state: Dict[str, Union[float, torch.Tensor]],
src_state: Dict[str, Union[float, torch.Tensor]],
):
"""Filter name, size mismatch instances between dicts.
Args:
dst_state: reference state dict for filtering
src_state: target state dict for filtering
"""
match_state = {}
for key, value in src_state.items():
if key in dst_state and (dst_state[key].size() == src_state[key].size()):
match_state[key] = value
else:
if key not in dst_state:
logging.warning(
f"Filter out {key} from pretrained dict"
+ " because of name not found in target dict"
)
else:
logging.warning(
f"Filter out {key} from pretrained dict"
+ " because of size mismatch"
+ f"({dst_state[key].size()}-{src_state[key].size()})"
)
return match_state
def assigment_scope_map(dst_state: dict, src_state: dict, scope_map: str = None):
"""Compute the union of the current variables and checkpoint variables."""
import collections
import re
# current model variables
name_to_variable = collections.OrderedDict()
for name, var in dst_state.items():
name_to_variable[name] = var
scope_map_num = 0
if scope_map is not None:
scope_map = scope_map.split(",")
scope_map_num = len(scope_map) // 2
for scope_map_idx in range(scope_map_num):
scope_map_id = scope_map_idx * 2
logging.info(
"assignment_map from scope {} to {}".format(
scope_map[scope_map_id], scope_map[scope_map_id + 1]
)
)
assignment_map = {}
for name, var in src_state.items():
if scope_map:
for scope_map_idx in range(scope_map_num):
scope_map_id = scope_map_idx * 2
try:
idx = name.index(scope_map[scope_map_id])
new_name = (
scope_map[scope_map_id + 1]
+ name[idx + len(scope_map[scope_map_id]) :]
)
if new_name in name_to_variable:
assignment_map[name] = var
except:
continue
else:
if name in name_to_variable:
assignment_map[name] = var
return assignment_map
def load_pretrained_model(
path: str,
model: torch.nn.Module,
ignore_init_mismatch: bool,
map_location: str = "cpu",
oss_bucket=None,
scope_map=None,
excludes=None,
):
"""Load a model state and set it to the model.
Args:
init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys>
Examples:
"""
obj = model
dst_state = obj.state_dict()
# import pdb;
# pdb.set_trace()
print(f"ckpt: {path}")
if oss_bucket is None:
src_state = torch.load(path, map_location=map_location)
else:
buffer = BytesIO(oss_bucket.get_object(path).read())
src_state = torch.load(buffer, map_location=map_location)
if "state_dict" in src_state:
src_state = src_state["state_dict"]
for k in dst_state.keys():
if not k.startswith("module.") and "module." + k in src_state.keys():
k_ddp = "module." + k
else:
k_ddp = k
if k_ddp in src_state:
dst_state[k] = src_state[k_ddp]
else:
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}")
flag = obj.load_state_dict(dst_state, strict=True)
# print(flag)
# def load_pretrained_model(
# path: str,
# model: torch.nn.Module,
# ignore_init_mismatch: bool,
# map_location: str = "cpu",
# oss_bucket=None,
# scope_map=None,
# excludes=None,
# ):
# """Load a model state and set it to the model.
#
# Args:
# init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys>
#
# Examples:
#
# """
#
# obj = model
#
# if oss_bucket is None:
# src_state = torch.load(path, map_location=map_location)
# else:
# buffer = BytesIO(oss_bucket.get_object(path).read())
# src_state = torch.load(buffer, map_location=map_location)
# src_state = src_state["model"] if "model" in src_state else src_state
#
# if excludes is not None:
# for e in excludes.split(","):
# src_state = {k: v for k, v in src_state.items() if not k.startswith(e)}
#
# dst_state = obj.state_dict()
# src_state = assigment_scope_map(dst_state, src_state, scope_map)
#
# if ignore_init_mismatch:
# src_state = filter_state_dict(dst_state, src_state)
#
# logging.debug("Loaded src_state keys: {}".format(src_state.keys()))
# logging.debug("Loaded dst_state keys: {}".format(dst_state.keys()))
# dst_state.update(src_state)
# obj.load_state_dict(dst_state, strict=True)