Spaces:
Running
Running
from typing import Any | |
from typing import Dict | |
from typing import Union | |
from io import BytesIO | |
import logging | |
import torch | |
import torch.nn | |
import torch.optim | |
def filter_state_dict( | |
dst_state: Dict[str, Union[float, torch.Tensor]], | |
src_state: Dict[str, Union[float, torch.Tensor]], | |
): | |
"""Filter name, size mismatch instances between dicts. | |
Args: | |
dst_state: reference state dict for filtering | |
src_state: target state dict for filtering | |
""" | |
match_state = {} | |
for key, value in src_state.items(): | |
if key in dst_state and (dst_state[key].size() == src_state[key].size()): | |
match_state[key] = value | |
else: | |
if key not in dst_state: | |
logging.warning( | |
f"Filter out {key} from pretrained dict" | |
+ " because of name not found in target dict" | |
) | |
else: | |
logging.warning( | |
f"Filter out {key} from pretrained dict" | |
+ " because of size mismatch" | |
+ f"({dst_state[key].size()}-{src_state[key].size()})" | |
) | |
return match_state | |
def assigment_scope_map(dst_state: dict, src_state: dict, scope_map: str = None): | |
"""Compute the union of the current variables and checkpoint variables.""" | |
import collections | |
import re | |
# current model variables | |
name_to_variable = collections.OrderedDict() | |
for name, var in dst_state.items(): | |
name_to_variable[name] = var | |
scope_map_num = 0 | |
if scope_map is not None: | |
scope_map = scope_map.split(",") | |
scope_map_num = len(scope_map) // 2 | |
for scope_map_idx in range(scope_map_num): | |
scope_map_id = scope_map_idx * 2 | |
logging.info( | |
"assignment_map from scope {} to {}".format( | |
scope_map[scope_map_id], scope_map[scope_map_id + 1] | |
) | |
) | |
assignment_map = {} | |
for name, var in src_state.items(): | |
if scope_map: | |
for scope_map_idx in range(scope_map_num): | |
scope_map_id = scope_map_idx * 2 | |
try: | |
idx = name.index(scope_map[scope_map_id]) | |
new_name = ( | |
scope_map[scope_map_id + 1] | |
+ name[idx + len(scope_map[scope_map_id]) :] | |
) | |
if new_name in name_to_variable: | |
assignment_map[name] = var | |
except: | |
continue | |
else: | |
if name in name_to_variable: | |
assignment_map[name] = var | |
return assignment_map | |
def load_pretrained_model( | |
path: str, | |
model: torch.nn.Module, | |
ignore_init_mismatch: bool, | |
map_location: str = "cpu", | |
oss_bucket=None, | |
scope_map=None, | |
excludes=None, | |
): | |
"""Load a model state and set it to the model. | |
Args: | |
init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys> | |
Examples: | |
""" | |
obj = model | |
dst_state = obj.state_dict() | |
# import pdb; | |
# pdb.set_trace() | |
print(f"ckpt: {path}") | |
if oss_bucket is None: | |
src_state = torch.load(path, map_location=map_location) | |
else: | |
buffer = BytesIO(oss_bucket.get_object(path).read()) | |
src_state = torch.load(buffer, map_location=map_location) | |
if "state_dict" in src_state: | |
src_state = src_state["state_dict"] | |
for k in dst_state.keys(): | |
if not k.startswith("module.") and "module." + k in src_state.keys(): | |
k_ddp = "module." + k | |
else: | |
k_ddp = k | |
if k_ddp in src_state: | |
dst_state[k] = src_state[k_ddp] | |
else: | |
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}") | |
flag = obj.load_state_dict(dst_state, strict=True) | |
# print(flag) | |
# def load_pretrained_model( | |
# path: str, | |
# model: torch.nn.Module, | |
# ignore_init_mismatch: bool, | |
# map_location: str = "cpu", | |
# oss_bucket=None, | |
# scope_map=None, | |
# excludes=None, | |
# ): | |
# """Load a model state and set it to the model. | |
# | |
# Args: | |
# init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys> | |
# | |
# Examples: | |
# | |
# """ | |
# | |
# obj = model | |
# | |
# if oss_bucket is None: | |
# src_state = torch.load(path, map_location=map_location) | |
# else: | |
# buffer = BytesIO(oss_bucket.get_object(path).read()) | |
# src_state = torch.load(buffer, map_location=map_location) | |
# src_state = src_state["model"] if "model" in src_state else src_state | |
# | |
# if excludes is not None: | |
# for e in excludes.split(","): | |
# src_state = {k: v for k, v in src_state.items() if not k.startswith(e)} | |
# | |
# dst_state = obj.state_dict() | |
# src_state = assigment_scope_map(dst_state, src_state, scope_map) | |
# | |
# if ignore_init_mismatch: | |
# src_state = filter_state_dict(dst_state, src_state) | |
# | |
# logging.debug("Loaded src_state keys: {}".format(src_state.keys())) | |
# logging.debug("Loaded dst_state keys: {}".format(dst_state.keys())) | |
# dst_state.update(src_state) | |
# obj.load_state_dict(dst_state, strict=True) | |