Spaces:
Running
Running
import os | |
import time | |
import torch | |
import logging | |
from tqdm import tqdm | |
from datetime import datetime | |
import torch.distributed as dist | |
from contextlib import nullcontext | |
# from torch.utils.tensorboard import SummaryWriter | |
from tensorboardX import SummaryWriter | |
from pathlib import Path | |
from funasr_detach.train_utils.device_funcs import to_device | |
from funasr_detach.train_utils.recursive_op import recursive_average | |
from funasr_detach.train_utils.average_nbest_models import average_checkpoints | |
class Trainer: | |
""" | |
A simple trainer class for training a PyTorch model, saving checkpoints at the end of each epoch, | |
and optionally resuming from a saved checkpoint. | |
Attributes: | |
max_epoch (int): Maximum number of epochs for training. | |
model (torch.nn.Module): The model to be trained. | |
optim (torch.optim.Optimizer): The optimizer to use for training. | |
scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler. | |
dataloader_train (torch.utils.data.DataLoader): DataLoader for the training dataset. | |
dataloader_val (torch.utils.data.DataLoader): DataLoader for the validation dataset. | |
output_dir (str): Directory where model checkpoints will be saved. | |
resume (str, optional): Path to a checkpoint to resume training from. | |
""" | |
def __init__( | |
self, | |
model, | |
optim, | |
scheduler, | |
dataloader_train, | |
dataloader_val, | |
local_rank, | |
use_ddp=False, | |
use_fsdp=False, | |
output_dir: str = "./", | |
**kwargs, | |
): | |
""" | |
Initializes the Trainer class with the model, optimizer, scheduler, dataloaders, and other settings. | |
Args: | |
model (torch.nn.Module): The model to be trained. | |
optim (torch.optim.Optimizer): The optimizer to use for training. | |
scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler. | |
dataloader_train (torch.utils.data.DataLoader): The DataLoader for the training dataset. | |
dataloader_val (torch.utils.data.DataLoader): The DataLoader for the validation dataset. | |
**kwargs: Additional keyword arguments: | |
max_epoch (int): The maximum number of epochs for training. | |
output_dir (str): The directory where model checkpoints will be saved. Default is './'. | |
resume (str, optional): The file path to a checkpoint to resume training from. | |
""" | |
self.model = model | |
self.optim = optim | |
self.scheduler = scheduler | |
self.dataloader_train = dataloader_train | |
self.dataloader_val = dataloader_val | |
self.output_dir = output_dir | |
self.resume = kwargs.get("resume", True) | |
self.start_epoch = 0 | |
self.max_epoch = kwargs.get("max_epoch", 100) | |
self.local_rank = local_rank | |
self.use_ddp = use_ddp | |
self.use_fsdp = use_fsdp | |
self.device = next(model.parameters()).device | |
self.avg_nbest_model = kwargs.get("avg_nbest_model", 5) | |
self.kwargs = kwargs | |
self.log_interval = kwargs.get("log_interval", 50) | |
self.batch_total = 0 | |
try: | |
rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
except: | |
rank = 0 | |
world_size = 1 | |
logging.warning("distributed is not initialized, only single shard") | |
self.rank = rank | |
self.world_size = world_size | |
os.makedirs(os.path.join(self.output_dir, "tensorboard"), exist_ok=True) | |
self.writer = ( | |
SummaryWriter(os.path.join(self.output_dir, "tensorboard")) | |
if rank == 0 | |
else None | |
) | |
def _save_checkpoint(self, epoch): | |
""" | |
Saves a checkpoint containing the model's state, the optimizer's state, | |
and the scheduler's state at the end of the given epoch. This method is | |
intended to be called at the end of each epoch to save the training progress. | |
Args: | |
epoch (int): The epoch number at which the checkpoint is being saved. | |
""" | |
state = { | |
"epoch": epoch, | |
"state_dict": self.model.state_dict(), | |
"optimizer": self.optim.state_dict(), | |
"scheduler": self.scheduler.state_dict(), | |
} | |
# Create output directory if it does not exist | |
os.makedirs(self.output_dir, exist_ok=True) | |
filename = os.path.join(self.output_dir, f"model.pt.ep{epoch}") | |
torch.save(state, filename) | |
print(f"\nCheckpoint saved to {filename}\n") | |
latest = Path(os.path.join(self.output_dir, f"model.pt")) | |
torch.save(state, latest) | |
def _resume_checkpoint(self, resume_path): | |
""" | |
Resumes training from a checkpoint at the given file path. | |
Loads the model's state, the optimizer's state, and the scheduler's state. | |
Args: | |
resume_path (str): The file path to the checkpoint to resume from. | |
""" | |
ckpt = os.path.join(resume_path, "model.pt") | |
if os.path.isfile(ckpt): | |
checkpoint = torch.load(ckpt) | |
self.start_epoch = checkpoint["epoch"] + 1 | |
# self.model.load_state_dict(checkpoint['state_dict']) | |
src_state = checkpoint["state_dict"] | |
dst_state = self.model.state_dict() | |
for k in dst_state.keys(): | |
if not k.startswith("module.") and "module." + k in src_state.keys(): | |
k_ddp = "module." + k | |
else: | |
k_ddp = k | |
if k_ddp in src_state.keys(): | |
dst_state[k] = src_state[k_ddp] | |
else: | |
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}") | |
self.model.load_state_dict(dst_state) | |
self.optim.load_state_dict(checkpoint["optimizer"]) | |
self.scheduler.load_state_dict(checkpoint["scheduler"]) | |
print(f"Checkpoint loaded successfully from '{ckpt}'") | |
else: | |
print(f"No checkpoint found at '{ckpt}', starting from scratch") | |
if self.use_ddp or self.use_fsdp: | |
dist.barrier() | |
def run(self): | |
""" | |
Starts the training process, iterating over epochs, training the model, | |
and saving checkpoints at the end of each epoch. | |
""" | |
if self.resume: | |
self._resume_checkpoint(self.output_dir) | |
for epoch in range(self.start_epoch, self.max_epoch + 1): | |
time1 = time.perf_counter() | |
self._train_epoch(epoch) | |
if self.use_ddp or self.use_fsdp: | |
dist.barrier() | |
self._validate_epoch(epoch) | |
if self.use_ddp or self.use_fsdp: | |
dist.barrier() | |
if self.rank == 0: | |
self._save_checkpoint(epoch) | |
if self.use_ddp or self.use_fsdp: | |
dist.barrier() | |
self.scheduler.step() | |
time2 = time.perf_counter() | |
time_escaped = (time2 - time1) / 3600.0 | |
print( | |
f"\nrank: {self.local_rank}, time_escaped_epoch: {time_escaped:.3f} hours, estimated to finish {self.max_epoch} epoch: {(self.max_epoch-epoch)*time_escaped:.3f}\n" | |
) | |
if self.rank == 0: | |
average_checkpoints(self.output_dir, self.avg_nbest_model) | |
if self.use_ddp or self.use_fsdp: | |
dist.barrier() | |
if self.writer: | |
self.writer.close() | |
def _train_epoch(self, epoch): | |
""" | |
Defines the training process for a single epoch with gradient accumulation. | |
Args: | |
epoch (int): The current epoch number. | |
""" | |
self.model.train() | |
pbar = tqdm( | |
colour="blue", | |
desc=f"rank: {self.local_rank}, Training Epoch: {epoch + 1}", | |
total=len(self.dataloader_train), | |
dynamic_ncols=True, | |
) | |
# Set the number of steps for gradient accumulation | |
accum_grad = self.kwargs.get("accum_grad", 1) | |
# Initialize the gradient accumulation | |
self.optim.zero_grad() | |
speed_stats = {} | |
time5 = time.perf_counter() | |
for batch_idx, batch in enumerate(self.dataloader_train): | |
self.batch_total += 1 | |
time1 = time.perf_counter() | |
speed_stats["data_load"] = f"{time1-time5:0.3f}" | |
batch = to_device(batch, self.device) | |
my_context = ( | |
self.model.no_sync if batch_idx % accum_grad != 0 else nullcontext | |
) | |
with my_context(): | |
time2 = time.perf_counter() | |
retval = self.model(**batch) | |
torch.cuda.empty_cache() | |
time3 = time.perf_counter() | |
speed_stats["forward_time"] = f"{time3 - time2:0.3f}" | |
loss, stats, weight = retval | |
stats = {k: v for k, v in stats.items() if v is not None} | |
if self.use_ddp or self.use_fsdp: | |
# Apply weighted averaging for loss and stats | |
loss = (loss * weight.type(loss.dtype)).sum() | |
# if distributed, this method can also apply all_reduce() | |
stats, weight = recursive_average(stats, weight, distributed=True) | |
# Now weight is summation over all workers | |
loss /= weight | |
# Multiply world_size because DistributedDataParallel | |
# automatically normalizes the gradient by world_size. | |
loss *= self.world_size | |
# Scale the loss since we're not updating for every mini-batch | |
loss = loss / accum_grad | |
loss.backward() | |
time4 = time.perf_counter() | |
speed_stats["backward_time"] = f"{time4 - time3:0.3f}" | |
# Perform an optimizer step only after accumulating enough gradients | |
if (batch_idx + 1) % accum_grad == 0 or (batch_idx + 1) == len( | |
self.dataloader_train | |
): | |
# Perform gradient clipping if it is set | |
if self.kwargs.get("grad_clip", None) is not None: | |
grad_norm = torch.nn.utils.clip_grad_norm_( | |
self.model.parameters(), | |
max_norm=self.kwargs.get("grad_clip", 10.0), | |
norm_type=self.kwargs.get("grad_clip_type", 2.0), | |
) | |
if not torch.isfinite(grad_norm): | |
logging.warning( | |
f"The grad norm is {grad_norm}. Skipping updating the model." | |
) | |
self.optim.zero_grad() # Reset gradients | |
continue | |
# Execute an optimization step (update model parameters) | |
if self.use_ddp or self.use_fsdp: | |
dist.barrier() | |
self.optim.step() | |
self.scheduler.step() | |
# Clear gradients for the next accumulation stage | |
self.optim.zero_grad() | |
total_time = f"{time.perf_counter() - time5:0.3f}" | |
time5 = time.perf_counter() | |
speed_stats["optim_time"] = f"{time5 - time4:0.3f}" | |
speed_stats["total_time"] = total_time | |
if (batch_idx + 1) % self.log_interval == 0 or (batch_idx + 1) == len( | |
self.dataloader_train | |
): | |
pbar.update(self.log_interval) | |
gpu_info = ( | |
"GPU, memory: {:.3f} GB, " | |
"{:.3f} GB, " | |
"{:.3f} GB, " | |
"{:.3f} GB".format( | |
torch.cuda.memory_allocated() / 1024 / 1024 / 1024, | |
torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024, | |
torch.cuda.memory_reserved() / 1024 / 1024 / 1024, | |
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, | |
) | |
) | |
lr = self.scheduler.get_last_lr()[0] | |
time_now = datetime.now() | |
time_now = time_now.strftime("%Y-%m-%d %H:%M:%S") | |
description = ( | |
f"{time_now}, " | |
f"rank: {self.local_rank}, " | |
f"epoch: {epoch}/{self.max_epoch}, " | |
f"step: {batch_idx+1}/{len(self.dataloader_train)}, total: {self.batch_total}, " | |
f"(loss: {loss.detach().cpu().item():.3f}), " | |
f"(lr: {lr:.3e}), " | |
f"{[(k, round(v.cpu().item(), 3)) for k, v in stats.items()]}, " | |
f"{speed_stats}, " | |
f"{gpu_info}" | |
) | |
pbar.set_description(description) | |
if self.writer: | |
self.writer.add_scalar( | |
f"rank{self.local_rank}_Loss/train", | |
loss.item(), | |
self.batch_total, | |
) | |
self.writer.add_scalar( | |
f"rank{self.local_rank}_lr/train", lr, self.batch_total | |
) | |
for key, var in stats.items(): | |
self.writer.add_scalar( | |
f"rank{self.local_rank}_{key}/train", | |
var.item(), | |
self.batch_total, | |
) | |
for key, var in speed_stats.items(): | |
self.writer.add_scalar( | |
f"rank{self.local_rank}_{key}/train", | |
eval(var), | |
self.batch_total, | |
) | |
pbar.close() | |
def _validate_epoch(self, epoch): | |
""" | |
Defines the validation process for a single epoch. | |
Should be implemented with the actual model validation steps. | |
Args: | |
epoch (int): The current epoch number. | |
""" | |
self.model.eval() | |
with torch.no_grad(): | |
pbar = tqdm( | |
colour="red", | |
desc=f"rank: {self.local_rank}, Validation Epoch: {epoch + 1}", | |
total=len(self.dataloader_val), | |
dynamic_ncols=True, | |
) | |
speed_stats = {} | |
time5 = time.perf_counter() | |
for batch_idx, batch in enumerate(self.dataloader_val): | |
time1 = time.perf_counter() | |
speed_stats["data_load"] = f"{time1 - time5:0.3f}" | |
batch = to_device(batch, self.device) | |
time2 = time.perf_counter() | |
retval = self.model(**batch) | |
time3 = time.perf_counter() | |
speed_stats["forward_time"] = f"{time3 - time2:0.3f}" | |
loss, stats, weight = retval | |
stats = {k: v for k, v in stats.items() if v is not None} | |
if self.use_ddp or self.use_fsdp: | |
# Apply weighted averaging for loss and stats | |
loss = (loss * weight.type(loss.dtype)).sum() | |
# if distributed, this method can also apply all_reduce() | |
stats, weight = recursive_average(stats, weight, distributed=True) | |
# Now weight is summation over all workers | |
loss /= weight | |
# Multiply world_size because DistributedDataParallel | |
# automatically normalizes the gradient by world_size. | |
loss *= self.world_size | |
# Scale the loss since we're not updating for every mini-batch | |
loss = loss | |
time4 = time.perf_counter() | |
if (batch_idx + 1) % self.log_interval == 0 or (batch_idx + 1) == len( | |
self.dataloader_val | |
): | |
pbar.update(self.log_interval) | |
time_now = datetime.now() | |
time_now = time_now.strftime("%Y-%m-%d %H:%M:%S") | |
description = ( | |
f"{time_now}, " | |
f"rank: {self.local_rank}, " | |
f"validation epoch: {epoch}/{self.max_epoch}, " | |
f"step: {batch_idx+1}/{len(self.dataloader_val)}, " | |
f"(loss: {loss.detach().cpu().item():.3f}), " | |
f"{[(k, round(v.cpu().item(), 3)) for k, v in stats.items()]}, " | |
f"{speed_stats}, " | |
) | |
pbar.set_description(description) | |
if self.writer: | |
self.writer.add_scalar( | |
f"rank{self.local_rank}_Loss/val", | |
loss.item(), | |
epoch * len(self.dataloader_val) + batch_idx, | |
) | |
for key, var in stats.items(): | |
self.writer.add_scalar( | |
f"rank{self.local_rank}_{key}/val", | |
var.item(), | |
epoch * len(self.dataloader_val) + batch_idx, | |
) | |
for key, var in speed_stats.items(): | |
self.writer.add_scalar( | |
f"rank{self.local_rank}_{key}/val", | |
eval(var), | |
epoch * len(self.dataloader_val) + batch_idx, | |
) | |