Step-Audio / funasr_detach /utils /timestamp_tools.py
martin
initial
67c46fd
raw
history blame
7.36 kB
import torch
import codecs
import logging
import argparse
import numpy as np
# import edit_distance
from itertools import zip_longest
def cif_wo_hidden(alphas, threshold):
batch_size, len_time = alphas.size()
# loop varss
integrate = torch.zeros([batch_size], device=alphas.device)
# intermediate vars along time
list_fires = []
for t in range(len_time):
alpha = alphas[:, t]
integrate += alpha
list_fires.append(integrate)
fire_place = integrate >= threshold
integrate = torch.where(
fire_place,
integrate - torch.ones([batch_size], device=alphas.device) * threshold,
integrate,
)
fires = torch.stack(list_fires, 1)
return fires
def ts_prediction_lfr6_standard(
us_alphas,
us_peaks,
char_list,
vad_offset=0.0,
force_time_shift=-1.5,
sil_in_str=True,
):
if not len(char_list):
return "", []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 12
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
if len(us_alphas.shape) == 2:
alphas, peaks = us_alphas[0], us_peaks[0] # support inference batch_size=1 only
else:
alphas, peaks = us_alphas, us_peaks
if char_list[-1] == "</s>":
char_list = char_list[:-1]
fire_place = (
torch.where(peaks > 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift
) # total offset
if len(fire_place) != len(char_list) + 1:
alphas /= alphas.sum() / (len(char_list) + 1)
alphas = alphas.unsqueeze(0)
peaks = cif_wo_hidden(alphas, threshold=1.0 - 1e-4)[0]
fire_place = (
torch.where(peaks > 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift
) # total offset
num_frames = peaks.shape[0]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = (
torch.where(peaks > 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift
) # total offset
# assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0] * TIME_RATE])
new_char_list.append("<sil>")
# tokens timestamp
for i in range(len(fire_place) - 1):
new_char_list.append(char_list[i])
if (
MAX_TOKEN_DURATION < 0
or fire_place[i + 1] - fire_place[i] <= MAX_TOKEN_DURATION
):
timestamp_list.append(
[fire_place[i] * TIME_RATE, fire_place[i + 1] * TIME_RATE]
)
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i] * TIME_RATE, _split * TIME_RATE])
timestamp_list.append([_split * TIME_RATE, fire_place[i + 1] * TIME_RATE])
new_char_list.append("<sil>")
# tail token and end silence
# new_char_list.append(char_list[-1])
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) * 0.5
# _end = fire_place[-1]
timestamp_list[-1][1] = _end * TIME_RATE
timestamp_list.append([_end * TIME_RATE, num_frames * TIME_RATE])
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames * TIME_RATE
if vad_offset: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0
res_txt = ""
for char, timestamp in zip(new_char_list, timestamp_list):
# if char != '<sil>':
if not sil_in_str and char == "<sil>":
continue
res_txt += "{} {} {};".format(
char, str(timestamp[0] + 0.0005)[:5], str(timestamp[1] + 0.0005)[:5]
)
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != "<sil>":
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_txt, res
def timestamp_sentence(
punc_id_list, timestamp_postprocessed, text_postprocessed, return_raw_text=False
):
punc_list = [",", "。", "?", "、"]
res = []
if text_postprocessed is None:
return res
if timestamp_postprocessed is None:
return res
if len(timestamp_postprocessed) == 0:
return res
if len(text_postprocessed) == 0:
return res
if punc_id_list is None or len(punc_id_list) == 0:
res.append(
{
"text": text_postprocessed.split(),
"start": timestamp_postprocessed[0][0],
"end": timestamp_postprocessed[-1][1],
"timestamp": timestamp_postprocessed,
}
)
return res
if len(punc_id_list) != len(timestamp_postprocessed):
logging.warning("length mismatch between punc and timestamp")
sentence_text = ""
sentence_text_seg = ""
ts_list = []
sentence_start = timestamp_postprocessed[0][0]
sentence_end = timestamp_postprocessed[0][1]
texts = text_postprocessed.split()
punc_stamp_text_list = list(
zip_longest(punc_id_list, timestamp_postprocessed, texts, fillvalue=None)
)
for punc_stamp_text in punc_stamp_text_list:
punc_id, timestamp, text = punc_stamp_text
# sentence_text += text if text is not None else ''
if text is not None:
if "a" <= text[0] <= "z" or "A" <= text[0] <= "Z":
sentence_text += " " + text
elif len(sentence_text) and (
"a" <= sentence_text[-1] <= "z" or "A" <= sentence_text[-1] <= "Z"
):
sentence_text += " " + text
else:
sentence_text += text
sentence_text_seg += text + " "
ts_list.append(timestamp)
punc_id = int(punc_id) if punc_id is not None else 1
sentence_end = timestamp[1] if timestamp is not None else sentence_end
sentence_text_seg = (
sentence_text_seg[:-1]
if sentence_text_seg[-1] == " "
else sentence_text_seg
)
if punc_id > 1:
sentence_text += punc_list[punc_id - 2]
if return_raw_text:
res.append(
{
"text": sentence_text,
"start": sentence_start,
"end": sentence_end,
"timestamp": ts_list,
"raw_text": sentence_text_seg,
}
)
else:
res.append(
{
"text": sentence_text,
"start": sentence_start,
"end": sentence_end,
"timestamp": ts_list,
}
)
sentence_text = ""
sentence_text_seg = ""
ts_list = []
sentence_start = sentence_end
return res