Stéphanie Kamgnia Wonkap
initial commit
a6e92fe
# Databricks notebook source
import streamlit as st
import os
import yaml
from dotenv import load_dotenv
from src.generator import answer_with_rag
from ragatouille import RAGPretrainedModel
from src.data_preparation import split_documents
from transformers import pipeline
from langchain_community.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from src.retriever import init_vectorDB_from_doc, retriever
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from langchain_community.vectorstores import FAISS
import faiss
def load_config():
with open("./src/config.yml","r") as file_object:
try:
cfg=yaml.safe_load(file_object)
except yaml.YAMLError as exc:
logger.error(str(exc))
raise
else:
return cfg
cfg= load_config()
load_dotenv("./src/.env")
EMBEDDING_MODEL_NAME=cfg['EMBEDDING_MODEL_NAME']
DATA_FILE_PATH=cfg['DATA_FILE_PATH']
READER_MODEL_NAME=cfg['READER_MODEL_NAME']
RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME']
VECTORDB_PATH=cfg['VECTORDB_PATH']
if __name__ == "__main__":
st.title("RAG App to query le College de Pédiatrie")
user_query = st.text_input("Entrez votre question:")
# Initialize the retriever and LLM
loader = PyPDFLoader(DATA_FILE_PATH)
#loader = PyPDFDirectoryLoader(DATA_FILE_PATH)
raw_document_base = loader.load()
MARKDOWN_SEPARATORS = [
"\n#{1,6} ",
"```\n",
"\n\\*\\*\\*+\n",
"\n---+\n",
"\n___+\n",
"\n\n",
"\n",
" ",
"",]
docs_processed = split_documents(
512, # We choose a chunk size adapted to our model
raw_document_base,
tokenizer_name=EMBEDDING_MODEL_NAME,
separator=MARKDOWN_SEPARATORS
)
embedding_model=init_embedding_model(EMBEDDING_MODEL_NAME)
if os.path.exists(VECTORDB_PATH):
new_vector_store = FAISS.load_local(
VECTORDB_PATH, embedding_model,
allow_dangerous_deserialization=True)
else:
KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model)
KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH)
if st.button("Get Answer"):
# Get the answer and relevant documents
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
READER_LLM = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
do_sample=True,
temperature=0.2,
repetition_penalty=1.1,
return_full_text=False,
max_new_tokens=500,
)
RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME)
num_doc_before_rerank=15
num_final_releveant_docs=5
answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True)
#print(answer)
# Display the answer
st.write("### Answer:")
st.write(answer)
# Display the relevant documents
st.write("### Relevant Documents:")
for i, doc in enumerate(relevant_docs):
st.write(f"Document {i}:\n{doc.text}")