Last commit not found
import gradio as gr | |
import lightgbm as lgb | |
import joblib | |
# Load your trained model (assuming it's saved as 'lgbm_model.pkl') | |
model = joblib.load('lgbm_model.pkl') | |
def classify_text(text): | |
# Convert the input text to the appropriate format for your model | |
# For simplicity, let's assume you have a function `preprocess_text` for this | |
# processed_text = preprocess_text(text) | |
# If your model expects numerical features, convert text to numerical features | |
# For example: | |
# features = text_to_features(processed_text) | |
# Here, we assume the model can take raw text directly for simplicity | |
prediction = model.predict([text]) | |
return int(prediction[0]) | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=classify_text, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."), | |
outputs=gr.outputs.Label(num_top_classes=1), | |
title="Fake News Classifier", | |
description="Enter text to classify if it's fake (1) or not fake (0).", | |
examples=["This is a sample news article."] | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch() | |