Spaces:
Running
Running
SUBHRAJIT MOHANTY
commited on
Commit
·
5dbc569
1
Parent(s):
86e4192
app.py updated
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, Request
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
from pydantic import BaseModel, Field
|
4 |
from typing import List, Optional, Dict, Any, AsyncGenerator
|
@@ -8,6 +8,8 @@ import uuid
|
|
8 |
from datetime import datetime
|
9 |
import os
|
10 |
from contextlib import asynccontextmanager
|
|
|
|
|
11 |
|
12 |
# Third-party imports
|
13 |
from openai import AsyncOpenAI
|
@@ -17,6 +19,7 @@ from sentence_transformers import SentenceTransformer
|
|
17 |
import torch
|
18 |
import asyncio
|
19 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
20 |
|
21 |
# Models for OpenAI-compatible API
|
22 |
class Message(BaseModel):
|
@@ -46,6 +49,14 @@ class ChatCompletionChunk(BaseModel):
|
|
46 |
model: str
|
47 |
choices: List[Dict[str, Any]]
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Configuration
|
50 |
class Config:
|
51 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
@@ -64,127 +75,11 @@ class ApplicationState:
|
|
64 |
self.openai_client = None
|
65 |
self.qdrant_client = None
|
66 |
self.embedding_service = None
|
|
|
67 |
|
68 |
# Global state instance
|
69 |
app_state = ApplicationState()
|
70 |
|
71 |
-
@asynccontextmanager
|
72 |
-
async def lifespan(app: FastAPI):
|
73 |
-
# Startup
|
74 |
-
if not Config.GROQ_API_KEY:
|
75 |
-
raise ValueError("GROQ_API_KEY environment variable is required")
|
76 |
-
|
77 |
-
print("Initializing services...")
|
78 |
-
|
79 |
-
# Initialize OpenAI client with Groq endpoint
|
80 |
-
try:
|
81 |
-
print(f"Configuring OpenAI client with:")
|
82 |
-
print(f" Base URL: {Config.GROQ_BASE_URL}")
|
83 |
-
print(f" API Key: {'*' * 10}...{Config.GROQ_API_KEY[-4:] if Config.GROQ_API_KEY else 'None'}")
|
84 |
-
|
85 |
-
app_state.openai_client = AsyncOpenAI(
|
86 |
-
api_key=Config.GROQ_API_KEY,
|
87 |
-
base_url=Config.GROQ_BASE_URL,
|
88 |
-
timeout=60.0 # Add timeout
|
89 |
-
)
|
90 |
-
print("✓ OpenAI client initialized with Groq endpoint")
|
91 |
-
|
92 |
-
# Test the client with a simple request
|
93 |
-
try:
|
94 |
-
test_response = await app_state.openai_client.chat.completions.create(
|
95 |
-
model="mixtral-8x7b-32768",
|
96 |
-
messages=[{"role": "user", "content": "Hello"}],
|
97 |
-
max_tokens=10
|
98 |
-
)
|
99 |
-
print(f"✓ OpenAI client test successful - Response ID: {test_response.id}")
|
100 |
-
except Exception as test_error:
|
101 |
-
print(f"⚠ OpenAI client test failed: {test_error}")
|
102 |
-
print(" This might cause issues with chat completions")
|
103 |
-
|
104 |
-
except Exception as e:
|
105 |
-
print(f"✗ Error initializing OpenAI client: {e}")
|
106 |
-
print(f" Error type: {type(e)}")
|
107 |
-
raise e
|
108 |
-
|
109 |
-
# Initialize Qdrant client
|
110 |
-
try:
|
111 |
-
app_state.qdrant_client = AsyncQdrantClient(
|
112 |
-
url=Config.QDRANT_URL,
|
113 |
-
api_key=Config.QDRANT_API_KEY
|
114 |
-
)
|
115 |
-
print("✓ Qdrant client initialized")
|
116 |
-
except Exception as e:
|
117 |
-
print(f"✗ Error initializing Qdrant client: {e}")
|
118 |
-
raise e
|
119 |
-
|
120 |
-
# Initialize embedding service
|
121 |
-
try:
|
122 |
-
print("Loading embedding model...")
|
123 |
-
app_state.embedding_service = EmbeddingService()
|
124 |
-
print(f"✓ Embedding model loaded: {Config.EMBEDDING_MODEL}")
|
125 |
-
print(f"✓ Model device: {Config.DEVICE}")
|
126 |
-
print(f"✓ Vector dimension: {app_state.embedding_service.dimension}")
|
127 |
-
except Exception as e:
|
128 |
-
print(f"✗ Error initializing embedding service: {e}")
|
129 |
-
raise e # Fail fast if embedding service can't be initialized
|
130 |
-
|
131 |
-
# Verify Qdrant connection and auto-create collection
|
132 |
-
try:
|
133 |
-
collections = await app_state.qdrant_client.get_collections()
|
134 |
-
collection_names = [c.name for c in collections.collections]
|
135 |
-
print(f"✓ Connected to Qdrant. Available collections: {collection_names}")
|
136 |
-
|
137 |
-
# Check if our collection exists, if not create it
|
138 |
-
if Config.COLLECTION_NAME not in collection_names:
|
139 |
-
print(f"📁 Collection '{Config.COLLECTION_NAME}' not found. Creating automatically...")
|
140 |
-
try:
|
141 |
-
from qdrant_client.models import VectorParams, Distance
|
142 |
-
|
143 |
-
await app_state.qdrant_client.create_collection(
|
144 |
-
collection_name=Config.COLLECTION_NAME,
|
145 |
-
vectors_config=VectorParams(
|
146 |
-
size=app_state.embedding_service.dimension,
|
147 |
-
distance=Distance.COSINE
|
148 |
-
)
|
149 |
-
)
|
150 |
-
print(f"✓ Collection '{Config.COLLECTION_NAME}' created successfully!")
|
151 |
-
print(f"✓ Vector dimension: {app_state.embedding_service.dimension}")
|
152 |
-
print(f"✓ Distance metric: COSINE")
|
153 |
-
except Exception as create_error:
|
154 |
-
print(f"✗ Failed to create collection: {create_error}")
|
155 |
-
print("⚠ You may need to create the collection manually")
|
156 |
-
else:
|
157 |
-
print(f"✓ Collection '{Config.COLLECTION_NAME}' already exists")
|
158 |
-
|
159 |
-
except Exception as e:
|
160 |
-
print(f"⚠ Warning: Could not connect to Qdrant: {e}")
|
161 |
-
print("⚠ Collection auto-creation skipped")
|
162 |
-
|
163 |
-
print("🚀 All services initialized successfully!")
|
164 |
-
|
165 |
-
yield
|
166 |
-
|
167 |
-
# Shutdown
|
168 |
-
print("Shutting down services...")
|
169 |
-
if app_state.qdrant_client:
|
170 |
-
await app_state.qdrant_client.close()
|
171 |
-
print("✓ Qdrant client closed")
|
172 |
-
if app_state.openai_client:
|
173 |
-
await app_state.openai_client.close()
|
174 |
-
print("✓ OpenAI client closed")
|
175 |
-
if app_state.embedding_service and hasattr(app_state.embedding_service, 'executor'):
|
176 |
-
app_state.embedding_service.executor.shutdown(wait=True)
|
177 |
-
print("✓ Embedding service executor shutdown")
|
178 |
-
print("✓ Shutdown complete")
|
179 |
-
|
180 |
-
# Initialize FastAPI app
|
181 |
-
app = FastAPI(
|
182 |
-
title="RAG API with Groq and Qdrant",
|
183 |
-
description="OpenAI-compatible API for RAG using Groq and Qdrant",
|
184 |
-
version="1.0.0",
|
185 |
-
lifespan=lifespan
|
186 |
-
)
|
187 |
-
|
188 |
class EmbeddingService:
|
189 |
"""Service for generating embeddings using sentence-transformers"""
|
190 |
|
@@ -202,7 +97,6 @@ class EmbeddingService:
|
|
202 |
async def get_embedding(self, text: str) -> List[float]:
|
203 |
"""Generate embedding for given text"""
|
204 |
try:
|
205 |
-
# Run the synchronous model.encode in a thread pool
|
206 |
loop = asyncio.get_event_loop()
|
207 |
embedding = await loop.run_in_executor(
|
208 |
self.executor,
|
@@ -247,7 +141,6 @@ class EmbeddingService:
|
|
247 |
def health_check(self) -> dict:
|
248 |
"""Check embedding service health"""
|
249 |
try:
|
250 |
-
# Test encoding
|
251 |
test_embedding = self.model.encode(["test"])
|
252 |
return {
|
253 |
"status": "healthy",
|
@@ -263,94 +156,384 @@ class EmbeddingService:
|
|
263 |
"error": str(e)
|
264 |
}
|
265 |
|
266 |
-
class
|
267 |
-
"""
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
try:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
# Search in Qdrant
|
285 |
-
search_results = await
|
286 |
-
collection_name=
|
287 |
query_vector=query_embedding,
|
288 |
-
limit=
|
289 |
-
score_threshold=
|
290 |
)
|
291 |
|
292 |
-
#
|
293 |
-
|
294 |
for result in search_results:
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
299 |
|
300 |
-
print(f"
|
301 |
-
return
|
302 |
|
303 |
except Exception as e:
|
304 |
-
print(f"Error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
return []
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
@staticmethod
|
308 |
-
async def
|
309 |
-
"""
|
310 |
try:
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
-
if Config.COLLECTION_NAME not in collection_names:
|
316 |
-
print(f"Creating collection '{Config.COLLECTION_NAME}' on-demand...")
|
317 |
-
from qdrant_client.models import VectorParams, Distance
|
318 |
-
|
319 |
-
await app_state.qdrant_client.create_collection(
|
320 |
-
collection_name=Config.COLLECTION_NAME,
|
321 |
-
vectors_config=VectorParams(
|
322 |
-
size=app_state.embedding_service.dimension,
|
323 |
-
distance=Distance.COSINE
|
324 |
-
)
|
325 |
-
)
|
326 |
-
print(f"✓ Collection '{Config.COLLECTION_NAME}' created successfully!")
|
327 |
-
|
328 |
except Exception as e:
|
329 |
-
print(f"
|
330 |
-
|
331 |
|
332 |
@staticmethod
|
333 |
-
def build_context_prompt(query: str,
|
334 |
"""Build a context-aware prompt with retrieved chunks"""
|
335 |
-
if not
|
336 |
return query
|
337 |
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
-
prompt = f"""Based on the following
|
341 |
|
342 |
-
Context
|
343 |
-
{
|
344 |
|
345 |
-
|
346 |
|
347 |
-
Please provide a
|
348 |
|
349 |
return prompt
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
@app.get("/")
|
352 |
async def root():
|
353 |
-
return {"message": "RAG API with
|
354 |
|
355 |
@app.get("/health")
|
356 |
async def health_check():
|
@@ -379,7 +562,6 @@ async def health_check():
|
|
379 |
openai_health = {"status": "not_initialized", "error": "OpenAI client is None"}
|
380 |
else:
|
381 |
try:
|
382 |
-
# Quick test of OpenAI client
|
383 |
test_response = await app_state.openai_client.chat.completions.create(
|
384 |
model="mixtral-8x7b-32768",
|
385 |
messages=[{"role": "user", "content": "test"}],
|
@@ -394,6 +576,7 @@ async def health_check():
|
|
394 |
"openai_client": openai_health,
|
395 |
"qdrant": qdrant_status,
|
396 |
"embedding_service": embedding_health,
|
|
|
397 |
"collection": Config.COLLECTION_NAME,
|
398 |
"embedding_model": Config.EMBEDDING_MODEL,
|
399 |
"groq_endpoint": Config.GROQ_BASE_URL
|
@@ -401,7 +584,7 @@ async def health_check():
|
|
401 |
|
402 |
@app.post("/v1/chat/completions")
|
403 |
async def chat_completions(request: ChatCompletionRequest):
|
404 |
-
"""OpenAI-compatible chat completions endpoint with RAG"""
|
405 |
|
406 |
if not app_state.openai_client:
|
407 |
raise HTTPException(status_code=500, detail="OpenAI client not initialized")
|
@@ -415,17 +598,17 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
415 |
last_user_message = user_messages[-1].content
|
416 |
print(f"Processing query: {last_user_message[:100]}...")
|
417 |
|
418 |
-
# Retrieve relevant chunks
|
419 |
try:
|
420 |
-
|
421 |
-
print(f"Retrieved {len(
|
422 |
except Exception as e:
|
423 |
print(f"Error in retrieval: {e}")
|
424 |
-
|
425 |
|
426 |
# Build context-aware prompt
|
427 |
-
if
|
428 |
-
context_prompt = RAGService.build_context_prompt(last_user_message,
|
429 |
enhanced_messages = request.messages[:-1] + [Message(role="user", content=context_prompt)]
|
430 |
print("Using context-enhanced prompt")
|
431 |
else:
|
@@ -448,7 +631,6 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
448 |
raise
|
449 |
except Exception as e:
|
450 |
print(f"Unexpected error in chat_completions: {e}")
|
451 |
-
print(f"Error type: {type(e)}")
|
452 |
import traceback
|
453 |
traceback.print_exc()
|
454 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
@@ -456,10 +638,6 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
456 |
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
|
457 |
"""Create a non-streaming chat completion"""
|
458 |
try:
|
459 |
-
print(f"Calling OpenAI API with model: {request.model}")
|
460 |
-
print(f"Messages count: {len(messages)}")
|
461 |
-
print(f"Max tokens: {request.max_tokens}")
|
462 |
-
|
463 |
response = await app_state.openai_client.chat.completions.create(
|
464 |
model=request.model,
|
465 |
messages=messages,
|
@@ -469,12 +647,6 @@ async def create_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
469 |
stream=False
|
470 |
)
|
471 |
|
472 |
-
print(f"Received response from OpenAI API")
|
473 |
-
print(f"Response ID: {response.id}")
|
474 |
-
print(f"Response model: {response.model}")
|
475 |
-
print(f"Choices count: {len(response.choices)}")
|
476 |
-
|
477 |
-
# Convert response to OpenAI format (already compatible)
|
478 |
result = ChatCompletionResponse(
|
479 |
id=response.id,
|
480 |
created=response.created,
|
@@ -494,14 +666,10 @@ async def create_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
494 |
} if response.usage else None
|
495 |
)
|
496 |
|
497 |
-
print(f"Successfully created response")
|
498 |
return result
|
499 |
|
500 |
except Exception as e:
|
501 |
print(f"Error in create_chat_completion: {e}")
|
502 |
-
print(f"Error type: {type(e)}")
|
503 |
-
import traceback
|
504 |
-
traceback.print_exc()
|
505 |
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
|
506 |
|
507 |
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
|
@@ -536,7 +704,6 @@ async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
536 |
|
537 |
yield f"data: {chunk_response.model_dump_json()}\n\n"
|
538 |
|
539 |
-
# Send final chunk
|
540 |
yield "data: [DONE]\n\n"
|
541 |
|
542 |
except Exception as e:
|
@@ -549,132 +716,153 @@ async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
549 |
}
|
550 |
yield f"data: {json.dumps(error_chunk)}\n\n"
|
551 |
|
552 |
-
#
|
553 |
-
@app.post("/v1/
|
554 |
-
async def
|
555 |
-
"""
|
556 |
try:
|
557 |
-
|
558 |
-
|
559 |
-
raise HTTPException(status_code=500, detail="Embedding service is not initialized")
|
560 |
|
561 |
-
#
|
562 |
-
|
|
|
563 |
|
564 |
-
#
|
565 |
-
|
|
|
|
|
|
|
|
|
|
|
566 |
|
567 |
-
#
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
}
|
576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
)
|
583 |
|
584 |
-
return {
|
|
|
|
|
|
|
|
|
585 |
|
586 |
except Exception as e:
|
587 |
-
|
|
|
588 |
|
589 |
-
@app.
|
590 |
-
async def
|
591 |
-
"""
|
592 |
try:
|
593 |
-
|
594 |
-
|
595 |
-
raise HTTPException(status_code=500, detail="Embedding service is not initialized")
|
596 |
-
|
597 |
-
# Auto-create collection if it doesn't exist
|
598 |
-
await RAGService._ensure_collection_exists()
|
599 |
-
|
600 |
-
# Extract texts and metadata
|
601 |
-
texts = [doc.get("content", "") for doc in documents]
|
602 |
-
metadatas = [doc.get("metadata", {}) for doc in documents]
|
603 |
-
|
604 |
-
# Generate embeddings for all documents
|
605 |
-
embeddings = await app_state.embedding_service.batch_embed(texts)
|
606 |
-
|
607 |
-
# Create points
|
608 |
-
points = []
|
609 |
-
for i, (text, embedding, metadata) in enumerate(zip(texts, embeddings, metadatas)):
|
610 |
-
point = PointStruct(
|
611 |
-
id=str(uuid.uuid4()),
|
612 |
-
vector=embedding,
|
613 |
-
payload={
|
614 |
-
"content": text,
|
615 |
-
"metadata": metadata,
|
616 |
-
"timestamp": datetime.now().isoformat()
|
617 |
-
}
|
618 |
-
)
|
619 |
-
points.append(point)
|
620 |
|
621 |
-
|
622 |
-
await app_state.qdrant_client.upsert(
|
623 |
-
collection_name=Config.COLLECTION_NAME,
|
624 |
-
points=points
|
625 |
-
)
|
626 |
|
627 |
return {
|
628 |
-
"
|
629 |
-
"
|
630 |
}
|
631 |
|
632 |
except Exception as e:
|
633 |
-
|
|
|
634 |
|
635 |
-
@app.
|
636 |
-
async def
|
637 |
-
"""
|
638 |
try:
|
639 |
-
|
640 |
-
|
641 |
-
raise HTTPException(status_code=500, detail="Embedding service is not initialized")
|
642 |
|
643 |
-
|
644 |
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
|
|
|
|
|
|
|
|
659 |
|
660 |
-
|
661 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
collection_name=Config.COLLECTION_NAME,
|
663 |
-
|
664 |
-
size=app_state.embedding_service.dimension, # 384 for all-MiniLM-L6-v2
|
665 |
-
distance=Distance.COSINE
|
666 |
-
)
|
667 |
)
|
668 |
|
669 |
-
return {
|
670 |
-
"message": f"Collection '{Config.COLLECTION_NAME}' created successfully",
|
671 |
-
"vector_size": app_state.embedding_service.dimension,
|
672 |
-
"distance": "cosine",
|
673 |
-
"status": "created"
|
674 |
-
}
|
675 |
|
676 |
except Exception as e:
|
677 |
-
raise HTTPException(status_code=500, detail=f"Error
|
678 |
|
679 |
@app.get("/v1/collections/info")
|
680 |
async def get_collection_info():
|
@@ -683,8 +871,7 @@ async def get_collection_info():
|
|
683 |
if app_state.qdrant_client is None:
|
684 |
raise HTTPException(status_code=500, detail="Qdrant client is not initialized")
|
685 |
|
686 |
-
|
687 |
-
await RAGService._ensure_collection_exists()
|
688 |
|
689 |
collection_info = await app_state.qdrant_client.get_collection(Config.COLLECTION_NAME)
|
690 |
return {
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Request, UploadFile, File
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
from pydantic import BaseModel, Field
|
4 |
from typing import List, Optional, Dict, Any, AsyncGenerator
|
|
|
8 |
from datetime import datetime
|
9 |
import os
|
10 |
from contextlib import asynccontextmanager
|
11 |
+
import tempfile
|
12 |
+
import shutil
|
13 |
|
14 |
# Third-party imports
|
15 |
from openai import AsyncOpenAI
|
|
|
19 |
import torch
|
20 |
import asyncio
|
21 |
from concurrent.futures import ThreadPoolExecutor
|
22 |
+
import PyPDF2
|
23 |
|
24 |
# Models for OpenAI-compatible API
|
25 |
class Message(BaseModel):
|
|
|
49 |
model: str
|
50 |
choices: List[Dict[str, Any]]
|
51 |
|
52 |
+
class DocumentUploadRequest(BaseModel):
|
53 |
+
metadata: Optional[Dict[str, Any]] = None
|
54 |
+
|
55 |
+
class DocumentSearchRequest(BaseModel):
|
56 |
+
query: str = Field(..., description="Search query")
|
57 |
+
limit: int = Field(default=5, description="Maximum number of results")
|
58 |
+
min_score: float = Field(default=0.1, description="Minimum similarity score")
|
59 |
+
|
60 |
# Configuration
|
61 |
class Config:
|
62 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
|
|
75 |
self.openai_client = None
|
76 |
self.qdrant_client = None
|
77 |
self.embedding_service = None
|
78 |
+
self.document_manager = None
|
79 |
|
80 |
# Global state instance
|
81 |
app_state = ApplicationState()
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
class EmbeddingService:
|
84 |
"""Service for generating embeddings using sentence-transformers"""
|
85 |
|
|
|
97 |
async def get_embedding(self, text: str) -> List[float]:
|
98 |
"""Generate embedding for given text"""
|
99 |
try:
|
|
|
100 |
loop = asyncio.get_event_loop()
|
101 |
embedding = await loop.run_in_executor(
|
102 |
self.executor,
|
|
|
141 |
def health_check(self) -> dict:
|
142 |
"""Check embedding service health"""
|
143 |
try:
|
|
|
144 |
test_embedding = self.model.encode(["test"])
|
145 |
return {
|
146 |
"status": "healthy",
|
|
|
156 |
"error": str(e)
|
157 |
}
|
158 |
|
159 |
+
class DocumentManager:
|
160 |
+
"""Enhanced document management with async support"""
|
161 |
|
162 |
+
def __init__(self, qdrant_client: AsyncQdrantClient, embedding_service: EmbeddingService):
|
163 |
+
self.qdrant_client = qdrant_client
|
164 |
+
self.embedding_service = embedding_service
|
165 |
+
self.collection_name = Config.COLLECTION_NAME
|
166 |
+
self.vector_size = 384
|
167 |
+
self.executor = ThreadPoolExecutor(max_workers=2)
|
168 |
+
|
169 |
+
async def _read_pdf(self, file_path: str) -> str:
|
170 |
+
"""Read text from PDF file asynchronously"""
|
171 |
try:
|
172 |
+
loop = asyncio.get_event_loop()
|
173 |
+
return await loop.run_in_executor(self.executor, self._sync_read_pdf, file_path)
|
174 |
+
except Exception as e:
|
175 |
+
print(f"Error reading PDF {file_path}: {e}")
|
176 |
+
return ""
|
177 |
+
|
178 |
+
def _sync_read_pdf(self, file_path: str) -> str:
|
179 |
+
"""Synchronous PDF reading"""
|
180 |
+
try:
|
181 |
+
with open(file_path, 'rb') as file:
|
182 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
183 |
+
text = ""
|
184 |
+
for page in pdf_reader.pages:
|
185 |
+
text += page.extract_text() + "\n"
|
186 |
+
return text
|
187 |
+
except Exception as e:
|
188 |
+
print(f"Error reading PDF {file_path}: {e}")
|
189 |
+
return ""
|
190 |
+
|
191 |
+
def _chunk_text(self, text: str, chunk_size: int = 500, overlap: int = 50) -> List[str]:
|
192 |
+
"""Split text into chunks"""
|
193 |
+
if len(text) <= chunk_size:
|
194 |
+
return [text]
|
195 |
+
|
196 |
+
chunks = []
|
197 |
+
start = 0
|
198 |
+
|
199 |
+
while start < len(text):
|
200 |
+
end = start + chunk_size
|
201 |
|
202 |
+
if end < len(text):
|
203 |
+
sentence_end = text.rfind('.', start, end)
|
204 |
+
if sentence_end > start:
|
205 |
+
end = sentence_end + 1
|
206 |
+
else:
|
207 |
+
word_end = text.rfind(' ', start, end)
|
208 |
+
if word_end > start:
|
209 |
+
end = word_end
|
210 |
|
211 |
+
chunk = text[start:end].strip()
|
212 |
+
if chunk:
|
213 |
+
chunks.append(chunk)
|
214 |
+
|
215 |
+
start = end - overlap
|
216 |
+
|
217 |
+
return chunks
|
218 |
+
|
219 |
+
async def _ensure_collection_exists(self):
|
220 |
+
"""Ensure the collection exists, create if it doesn't"""
|
221 |
+
try:
|
222 |
+
collections = await self.qdrant_client.get_collections()
|
223 |
+
collection_names = [c.name for c in collections.collections]
|
224 |
+
|
225 |
+
if self.collection_name not in collection_names:
|
226 |
+
print(f"Creating collection '{self.collection_name}' on-demand...")
|
227 |
+
await self.qdrant_client.create_collection(
|
228 |
+
collection_name=self.collection_name,
|
229 |
+
vectors_config=VectorParams(
|
230 |
+
size=self.vector_size,
|
231 |
+
distance=Distance.COSINE
|
232 |
+
)
|
233 |
+
)
|
234 |
+
print(f"✓ Collection '{self.collection_name}' created successfully!")
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Warning: Could not ensure collection exists: {e}")
|
237 |
+
|
238 |
+
async def add_document(self, file_path: str, metadata: Dict[str, Any] = None) -> str:
|
239 |
+
"""Add a PDF document to the collection"""
|
240 |
+
try:
|
241 |
+
await self._ensure_collection_exists()
|
242 |
+
|
243 |
+
# Read PDF
|
244 |
+
text = await self._read_pdf(file_path)
|
245 |
+
if not text:
|
246 |
+
print(f"Could not extract text from {file_path}")
|
247 |
+
return ""
|
248 |
+
|
249 |
+
# Create chunks
|
250 |
+
chunks = self._chunk_text(text)
|
251 |
+
if not chunks:
|
252 |
+
print(f"No chunks created from {file_path}")
|
253 |
+
return ""
|
254 |
+
|
255 |
+
# Generate document ID
|
256 |
+
document_id = str(uuid.uuid4())
|
257 |
+
|
258 |
+
# Create embeddings for all chunks
|
259 |
+
embeddings = await self.embedding_service.batch_embed(chunks)
|
260 |
+
|
261 |
+
# Create points for each chunk
|
262 |
+
points = []
|
263 |
+
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
|
264 |
+
payload = {
|
265 |
+
"document_id": document_id,
|
266 |
+
"file_path": file_path,
|
267 |
+
"chunk_index": i,
|
268 |
+
"content": chunk, # Use 'content' as the main field
|
269 |
+
"chunk_text": chunk, # Keep for compatibility
|
270 |
+
"total_chunks": len(chunks),
|
271 |
+
"timestamp": datetime.now().isoformat()
|
272 |
+
}
|
273 |
+
|
274 |
+
if metadata:
|
275 |
+
payload["metadata"] = metadata
|
276 |
+
|
277 |
+
point = PointStruct(
|
278 |
+
id=str(uuid.uuid4()),
|
279 |
+
vector=embedding,
|
280 |
+
payload=payload
|
281 |
+
)
|
282 |
+
points.append(point)
|
283 |
+
|
284 |
+
# Insert into Qdrant
|
285 |
+
await self.qdrant_client.upsert(collection_name=self.collection_name, points=points)
|
286 |
+
|
287 |
+
print(f"✓ Added document: {file_path}")
|
288 |
+
print(f" Document ID: {document_id}")
|
289 |
+
print(f" Chunks: {len(chunks)}")
|
290 |
+
|
291 |
+
return document_id
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
print(f"Error adding document {file_path}: {e}")
|
295 |
+
return ""
|
296 |
+
|
297 |
+
async def search_documents(self, query: str, limit: int = 5, min_score: float = 0.1) -> List[Dict[str, Any]]:
|
298 |
+
"""Search for relevant document chunks"""
|
299 |
+
try:
|
300 |
+
await self._ensure_collection_exists()
|
301 |
+
|
302 |
+
# Generate query embedding
|
303 |
+
query_embedding = await self.embedding_service.get_query_embedding(query)
|
304 |
|
305 |
# Search in Qdrant
|
306 |
+
search_results = await self.qdrant_client.search(
|
307 |
+
collection_name=self.collection_name,
|
308 |
query_vector=query_embedding,
|
309 |
+
limit=limit,
|
310 |
+
score_threshold=min_score
|
311 |
)
|
312 |
|
313 |
+
# Format results
|
314 |
+
results = []
|
315 |
for result in search_results:
|
316 |
+
results.append({
|
317 |
+
"score": result.score,
|
318 |
+
"text": result.payload.get("content", result.payload.get("chunk_text", "")),
|
319 |
+
"file_path": result.payload.get("file_path", ""),
|
320 |
+
"document_id": result.payload.get("document_id", ""),
|
321 |
+
"chunk_index": result.payload.get("chunk_index", 0)
|
322 |
+
})
|
323 |
|
324 |
+
print(f"✓ Found {len(results)} results for query: '{query}'")
|
325 |
+
return results
|
326 |
|
327 |
except Exception as e:
|
328 |
+
print(f"Error searching: {e}")
|
329 |
+
return []
|
330 |
+
|
331 |
+
async def list_documents(self) -> List[Dict[str, Any]]:
|
332 |
+
"""List all documents in the collection"""
|
333 |
+
try:
|
334 |
+
await self._ensure_collection_exists()
|
335 |
+
|
336 |
+
# Get all points
|
337 |
+
points, _ = await self.qdrant_client.scroll(
|
338 |
+
collection_name=self.collection_name,
|
339 |
+
limit=10000,
|
340 |
+
with_payload=True,
|
341 |
+
with_vectors=False
|
342 |
+
)
|
343 |
+
|
344 |
+
# Group by document_id
|
345 |
+
documents = {}
|
346 |
+
for point in points:
|
347 |
+
doc_id = point.payload.get("document_id")
|
348 |
+
if doc_id and doc_id not in documents:
|
349 |
+
documents[doc_id] = {
|
350 |
+
"document_id": doc_id,
|
351 |
+
"file_path": point.payload.get("file_path", ""),
|
352 |
+
"total_chunks": point.payload.get("total_chunks", 0),
|
353 |
+
"timestamp": point.payload.get("timestamp", ""),
|
354 |
+
"metadata": point.payload.get("metadata", {})
|
355 |
+
}
|
356 |
+
|
357 |
+
doc_list = list(documents.values())
|
358 |
+
print(f"✓ Found {len(doc_list)} documents")
|
359 |
+
return doc_list
|
360 |
+
|
361 |
+
except Exception as e:
|
362 |
+
print(f"Error listing documents: {e}")
|
363 |
return []
|
364 |
|
365 |
+
async def delete_document(self, document_id: str) -> bool:
|
366 |
+
"""Delete a document and all its chunks"""
|
367 |
+
try:
|
368 |
+
await self._ensure_collection_exists()
|
369 |
+
|
370 |
+
# Find all points for this document
|
371 |
+
points, _ = await self.qdrant_client.scroll(
|
372 |
+
collection_name=self.collection_name,
|
373 |
+
limit=10000,
|
374 |
+
with_payload=True,
|
375 |
+
with_vectors=False
|
376 |
+
)
|
377 |
+
|
378 |
+
# Collect point IDs to delete
|
379 |
+
points_to_delete = []
|
380 |
+
for point in points:
|
381 |
+
if point.payload.get("document_id") == document_id:
|
382 |
+
points_to_delete.append(point.id)
|
383 |
+
|
384 |
+
if not points_to_delete:
|
385 |
+
print(f"No document found with ID: {document_id}")
|
386 |
+
return False
|
387 |
+
|
388 |
+
# Delete points
|
389 |
+
await self.qdrant_client.delete(
|
390 |
+
collection_name=self.collection_name,
|
391 |
+
points_selector=points_to_delete
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"✓ Deleted document: {document_id} ({len(points_to_delete)} chunks)")
|
395 |
+
return True
|
396 |
+
|
397 |
+
except Exception as e:
|
398 |
+
print(f"Error deleting document: {e}")
|
399 |
+
return False
|
400 |
+
|
401 |
+
class RAGService:
|
402 |
+
"""Service for retrieval-augmented generation"""
|
403 |
+
|
404 |
@staticmethod
|
405 |
+
async def retrieve_relevant_chunks(query: str, top_k: int = Config.TOP_K) -> List[Dict[str, Any]]:
|
406 |
+
"""Retrieve relevant document chunks using the document manager"""
|
407 |
try:
|
408 |
+
if app_state.document_manager is None:
|
409 |
+
print("Error: Document manager is not initialized")
|
410 |
+
return []
|
411 |
+
|
412 |
+
# Use the document manager's search functionality
|
413 |
+
results = await app_state.document_manager.search_documents(
|
414 |
+
query=query,
|
415 |
+
limit=top_k,
|
416 |
+
min_score=Config.SIMILARITY_THRESHOLD
|
417 |
+
)
|
418 |
+
|
419 |
+
return results
|
420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
except Exception as e:
|
422 |
+
print(f"Error retrieving chunks: {e}")
|
423 |
+
return []
|
424 |
|
425 |
@staticmethod
|
426 |
+
def build_context_prompt(query: str, results: List[Dict[str, Any]]) -> str:
|
427 |
"""Build a context-aware prompt with retrieved chunks"""
|
428 |
+
if not results:
|
429 |
return query
|
430 |
|
431 |
+
# Build context parts like in your example
|
432 |
+
context_parts = []
|
433 |
+
for result in results:
|
434 |
+
context_parts.append(f"Source: {result['file_path']}\n{result['text']}")
|
435 |
+
|
436 |
+
combined_context = "\n\n---\n\n".join(context_parts)
|
437 |
|
438 |
+
prompt = f"""Based on the following context, answer the user's question:
|
439 |
|
440 |
+
Context:
|
441 |
+
{combined_context}
|
442 |
|
443 |
+
Question: {query}
|
444 |
|
445 |
+
Please provide a comprehensive answer based on the context provided."""
|
446 |
|
447 |
return prompt
|
448 |
|
449 |
+
@asynccontextmanager
|
450 |
+
async def lifespan(app: FastAPI):
|
451 |
+
# Startup
|
452 |
+
if not Config.GROQ_API_KEY:
|
453 |
+
raise ValueError("GROQ_API_KEY environment variable is required")
|
454 |
+
|
455 |
+
print("Initializing services...")
|
456 |
+
|
457 |
+
# Initialize OpenAI client with Groq endpoint
|
458 |
+
try:
|
459 |
+
print(f"Configuring OpenAI client with:")
|
460 |
+
print(f" Base URL: {Config.GROQ_BASE_URL}")
|
461 |
+
print(f" API Key: {'*' * 10}...{Config.GROQ_API_KEY[-4:] if Config.GROQ_API_KEY else 'None'}")
|
462 |
+
|
463 |
+
app_state.openai_client = AsyncOpenAI(
|
464 |
+
api_key=Config.GROQ_API_KEY,
|
465 |
+
base_url=Config.GROQ_BASE_URL,
|
466 |
+
timeout=60.0
|
467 |
+
)
|
468 |
+
print("✓ OpenAI client initialized with Groq endpoint")
|
469 |
+
except Exception as e:
|
470 |
+
print(f"✗ Error initializing OpenAI client: {e}")
|
471 |
+
raise e
|
472 |
+
|
473 |
+
# Initialize Qdrant client
|
474 |
+
try:
|
475 |
+
app_state.qdrant_client = AsyncQdrantClient(
|
476 |
+
url=Config.QDRANT_URL,
|
477 |
+
api_key=Config.QDRANT_API_KEY
|
478 |
+
)
|
479 |
+
print("✓ Qdrant client initialized")
|
480 |
+
except Exception as e:
|
481 |
+
print(f"✗ Error initializing Qdrant client: {e}")
|
482 |
+
raise e
|
483 |
+
|
484 |
+
# Initialize embedding service
|
485 |
+
try:
|
486 |
+
print("Loading embedding model...")
|
487 |
+
app_state.embedding_service = EmbeddingService()
|
488 |
+
print(f"✓ Embedding model loaded: {Config.EMBEDDING_MODEL}")
|
489 |
+
print(f"✓ Model device: {Config.DEVICE}")
|
490 |
+
print(f"✓ Vector dimension: {app_state.embedding_service.dimension}")
|
491 |
+
except Exception as e:
|
492 |
+
print(f"✗ Error initializing embedding service: {e}")
|
493 |
+
raise e
|
494 |
+
|
495 |
+
# Initialize document manager
|
496 |
+
try:
|
497 |
+
app_state.document_manager = DocumentManager(
|
498 |
+
qdrant_client=app_state.qdrant_client,
|
499 |
+
embedding_service=app_state.embedding_service
|
500 |
+
)
|
501 |
+
print("✓ Document manager initialized")
|
502 |
+
except Exception as e:
|
503 |
+
print(f"✗ Error initializing document manager: {e}")
|
504 |
+
raise e
|
505 |
+
|
506 |
+
print("🚀 All services initialized successfully!")
|
507 |
+
|
508 |
+
yield
|
509 |
+
|
510 |
+
# Shutdown
|
511 |
+
print("Shutting down services...")
|
512 |
+
if app_state.qdrant_client:
|
513 |
+
await app_state.qdrant_client.close()
|
514 |
+
print("✓ Qdrant client closed")
|
515 |
+
if app_state.openai_client:
|
516 |
+
await app_state.openai_client.close()
|
517 |
+
print("✓ OpenAI client closed")
|
518 |
+
if app_state.embedding_service and hasattr(app_state.embedding_service, 'executor'):
|
519 |
+
app_state.embedding_service.executor.shutdown(wait=True)
|
520 |
+
print("✓ Embedding service executor shutdown")
|
521 |
+
if app_state.document_manager and hasattr(app_state.document_manager, 'executor'):
|
522 |
+
app_state.document_manager.executor.shutdown(wait=True)
|
523 |
+
print("✓ Document manager executor shutdown")
|
524 |
+
print("✓ Shutdown complete")
|
525 |
+
|
526 |
+
# Initialize FastAPI app
|
527 |
+
app = FastAPI(
|
528 |
+
title="Enhanced RAG API with Document Management",
|
529 |
+
description="OpenAI-compatible API for RAG with document management using Groq and Qdrant",
|
530 |
+
version="1.0.0",
|
531 |
+
lifespan=lifespan
|
532 |
+
)
|
533 |
+
|
534 |
@app.get("/")
|
535 |
async def root():
|
536 |
+
return {"message": "Enhanced RAG API with Document Management", "status": "running"}
|
537 |
|
538 |
@app.get("/health")
|
539 |
async def health_check():
|
|
|
562 |
openai_health = {"status": "not_initialized", "error": "OpenAI client is None"}
|
563 |
else:
|
564 |
try:
|
|
|
565 |
test_response = await app_state.openai_client.chat.completions.create(
|
566 |
model="mixtral-8x7b-32768",
|
567 |
messages=[{"role": "user", "content": "test"}],
|
|
|
576 |
"openai_client": openai_health,
|
577 |
"qdrant": qdrant_status,
|
578 |
"embedding_service": embedding_health,
|
579 |
+
"document_manager": "initialized" if app_state.document_manager else "not_initialized",
|
580 |
"collection": Config.COLLECTION_NAME,
|
581 |
"embedding_model": Config.EMBEDDING_MODEL,
|
582 |
"groq_endpoint": Config.GROQ_BASE_URL
|
|
|
584 |
|
585 |
@app.post("/v1/chat/completions")
|
586 |
async def chat_completions(request: ChatCompletionRequest):
|
587 |
+
"""OpenAI-compatible chat completions endpoint with enhanced RAG"""
|
588 |
|
589 |
if not app_state.openai_client:
|
590 |
raise HTTPException(status_code=500, detail="OpenAI client not initialized")
|
|
|
598 |
last_user_message = user_messages[-1].content
|
599 |
print(f"Processing query: {last_user_message[:100]}...")
|
600 |
|
601 |
+
# Retrieve relevant chunks using enhanced search
|
602 |
try:
|
603 |
+
relevant_results = await RAGService.retrieve_relevant_chunks(last_user_message)
|
604 |
+
print(f"Retrieved {len(relevant_results)} chunks")
|
605 |
except Exception as e:
|
606 |
print(f"Error in retrieval: {e}")
|
607 |
+
relevant_results = []
|
608 |
|
609 |
# Build context-aware prompt
|
610 |
+
if relevant_results:
|
611 |
+
context_prompt = RAGService.build_context_prompt(last_user_message, relevant_results)
|
612 |
enhanced_messages = request.messages[:-1] + [Message(role="user", content=context_prompt)]
|
613 |
print("Using context-enhanced prompt")
|
614 |
else:
|
|
|
631 |
raise
|
632 |
except Exception as e:
|
633 |
print(f"Unexpected error in chat_completions: {e}")
|
|
|
634 |
import traceback
|
635 |
traceback.print_exc()
|
636 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
|
|
638 |
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
|
639 |
"""Create a non-streaming chat completion"""
|
640 |
try:
|
|
|
|
|
|
|
|
|
641 |
response = await app_state.openai_client.chat.completions.create(
|
642 |
model=request.model,
|
643 |
messages=messages,
|
|
|
647 |
stream=False
|
648 |
)
|
649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
result = ChatCompletionResponse(
|
651 |
id=response.id,
|
652 |
created=response.created,
|
|
|
666 |
} if response.usage else None
|
667 |
)
|
668 |
|
|
|
669 |
return result
|
670 |
|
671 |
except Exception as e:
|
672 |
print(f"Error in create_chat_completion: {e}")
|
|
|
|
|
|
|
673 |
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
|
674 |
|
675 |
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
|
|
|
704 |
|
705 |
yield f"data: {chunk_response.model_dump_json()}\n\n"
|
706 |
|
|
|
707 |
yield "data: [DONE]\n\n"
|
708 |
|
709 |
except Exception as e:
|
|
|
716 |
}
|
717 |
yield f"data: {json.dumps(error_chunk)}\n\n"
|
718 |
|
719 |
+
# Document management endpoints
|
720 |
+
@app.post("/v1/documents/upload")
|
721 |
+
async def upload_document(file: UploadFile = File(...), metadata: str = None):
|
722 |
+
"""Upload a PDF document"""
|
723 |
try:
|
724 |
+
if not app_state.document_manager:
|
725 |
+
raise HTTPException(status_code=500, detail="Document manager not initialized")
|
|
|
726 |
|
727 |
+
# Validate file type
|
728 |
+
if not file.filename.lower().endswith('.pdf'):
|
729 |
+
raise HTTPException(status_code=400, detail="Only PDF files are supported")
|
730 |
|
731 |
+
# Parse metadata if provided
|
732 |
+
parsed_metadata = {}
|
733 |
+
if metadata:
|
734 |
+
try:
|
735 |
+
parsed_metadata = json.loads(metadata)
|
736 |
+
except json.JSONDecodeError:
|
737 |
+
raise HTTPException(status_code=400, detail="Invalid metadata JSON")
|
738 |
|
739 |
+
# Save uploaded file temporarily
|
740 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
741 |
+
shutil.copyfileobj(file.file, tmp_file)
|
742 |
+
tmp_path = tmp_file.name
|
743 |
+
|
744 |
+
try:
|
745 |
+
# Add document to the collection
|
746 |
+
document_id = await app_state.document_manager.add_document(
|
747 |
+
file_path=tmp_path,
|
748 |
+
metadata={
|
749 |
+
**parsed_metadata,
|
750 |
+
"original_filename": file.filename,
|
751 |
+
"upload_timestamp": datetime.now().isoformat()
|
752 |
+
}
|
753 |
+
)
|
754 |
+
|
755 |
+
if not document_id:
|
756 |
+
raise HTTPException(status_code=500, detail="Failed to add document")
|
757 |
+
|
758 |
+
return {
|
759 |
+
"message": "Document uploaded successfully",
|
760 |
+
"document_id": document_id,
|
761 |
+
"filename": file.filename
|
762 |
}
|
763 |
+
|
764 |
+
finally:
|
765 |
+
# Clean up temporary file
|
766 |
+
os.unlink(tmp_path)
|
767 |
+
|
768 |
+
except HTTPException:
|
769 |
+
raise
|
770 |
+
except Exception as e:
|
771 |
+
print(f"Error uploading document: {e}")
|
772 |
+
raise HTTPException(status_code=500, detail=f"Error uploading document: {str(e)}")
|
773 |
+
|
774 |
+
@app.post("/v1/documents/search")
|
775 |
+
async def search_documents(request: DocumentSearchRequest):
|
776 |
+
"""Search for documents"""
|
777 |
+
try:
|
778 |
+
if not app_state.document_manager:
|
779 |
+
raise HTTPException(status_code=500, detail="Document manager not initialized")
|
780 |
|
781 |
+
results = await app_state.document_manager.search_documents(
|
782 |
+
query=request.query,
|
783 |
+
limit=request.limit,
|
784 |
+
min_score=request.min_score
|
785 |
)
|
786 |
|
787 |
+
return {
|
788 |
+
"query": request.query,
|
789 |
+
"results": results,
|
790 |
+
"count": len(results)
|
791 |
+
}
|
792 |
|
793 |
except Exception as e:
|
794 |
+
print(f"Error searching documents: {e}")
|
795 |
+
raise HTTPException(status_code=500, detail=f"Error searching documents: {str(e)}")
|
796 |
|
797 |
+
@app.get("/v1/documents/list")
|
798 |
+
async def list_documents():
|
799 |
+
"""List all documents"""
|
800 |
try:
|
801 |
+
if not app_state.document_manager:
|
802 |
+
raise HTTPException(status_code=500, detail="Document manager not initialized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
803 |
|
804 |
+
documents = await app_state.document_manager.list_documents()
|
|
|
|
|
|
|
|
|
805 |
|
806 |
return {
|
807 |
+
"documents": documents,
|
808 |
+
"count": len(documents)
|
809 |
}
|
810 |
|
811 |
except Exception as e:
|
812 |
+
print(f"Error listing documents: {e}")
|
813 |
+
raise HTTPException(status_code=500, detail=f"Error listing documents: {str(e)}")
|
814 |
|
815 |
+
@app.delete("/v1/documents/{document_id}")
|
816 |
+
async def delete_document(document_id: str):
|
817 |
+
"""Delete a document"""
|
818 |
try:
|
819 |
+
if not app_state.document_manager:
|
820 |
+
raise HTTPException(status_code=500, detail="Document manager not initialized")
|
|
|
821 |
|
822 |
+
success = await app_state.document_manager.delete_document(document_id)
|
823 |
|
824 |
+
if not success:
|
825 |
+
raise HTTPException(status_code=404, detail="Document not found")
|
826 |
+
|
827 |
+
return {"message": "Document deleted successfully", "document_id": document_id}
|
828 |
+
|
829 |
+
except HTTPException:
|
830 |
+
raise
|
831 |
+
except Exception as e:
|
832 |
+
print(f"Error deleting document: {e}")
|
833 |
+
raise HTTPException(status_code=500, detail=f"Error deleting document: {str(e)}")
|
834 |
+
|
835 |
+
# Legacy compatibility endpoints
|
836 |
+
@app.post("/v1/embeddings/add")
|
837 |
+
async def add_document_legacy(content: str, metadata: Optional[Dict] = None):
|
838 |
+
"""Legacy endpoint for adding documents (text content)"""
|
839 |
+
try:
|
840 |
+
if not app_state.embedding_service or not app_state.qdrant_client:
|
841 |
+
raise HTTPException(status_code=500, detail="Services not initialized")
|
842 |
|
843 |
+
await app_state.document_manager._ensure_collection_exists()
|
844 |
+
|
845 |
+
embedding = await app_state.embedding_service.get_document_embedding(content)
|
846 |
+
|
847 |
+
point = PointStruct(
|
848 |
+
id=str(uuid.uuid4()),
|
849 |
+
vector=embedding,
|
850 |
+
payload={
|
851 |
+
"content": content,
|
852 |
+
"metadata": metadata or {},
|
853 |
+
"timestamp": datetime.now().isoformat()
|
854 |
+
}
|
855 |
+
)
|
856 |
+
|
857 |
+
await app_state.qdrant_client.upsert(
|
858 |
collection_name=Config.COLLECTION_NAME,
|
859 |
+
points=[point]
|
|
|
|
|
|
|
860 |
)
|
861 |
|
862 |
+
return {"message": "Document added successfully", "id": point.id}
|
|
|
|
|
|
|
|
|
|
|
863 |
|
864 |
except Exception as e:
|
865 |
+
raise HTTPException(status_code=500, detail=f"Error adding document: {str(e)}")
|
866 |
|
867 |
@app.get("/v1/collections/info")
|
868 |
async def get_collection_info():
|
|
|
871 |
if app_state.qdrant_client is None:
|
872 |
raise HTTPException(status_code=500, detail="Qdrant client is not initialized")
|
873 |
|
874 |
+
await app_state.document_manager._ensure_collection_exists()
|
|
|
875 |
|
876 |
collection_info = await app_state.qdrant_client.get_collection(Config.COLLECTION_NAME)
|
877 |
return {
|