lawllm / lawchain.py
suchinth08's picture
Upload lawchain.py
8ecb9c7 verified
raw
history blame
2.34 kB
import transformers
import torch
import os
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
from InstructorEmbedding import INSTRUCTOR
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
import textwrap
import streamlit as st
persist_directory = 'db'
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
embedding = instructor_embeddings
tokenizer = AutoTokenizer.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
model = AutoModelForSeq2SeqLM.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
pipe = pipeline("text2text-generation",model=model, tokenizer=tokenizer, max_length=256)
local_llm = HuggingFacePipeline(pipeline=pipe)
vectordb = Chroma(persist_directory=persist_directory,embedding_function=embedding)
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
def get_lpphelper_chain():
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True)
return qa_chain
def wrap_text_preserve_newlines(text, width=110):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
wrap_text = wrap_text_preserve_newlines(llm_response['result'])
sources = '\n\nSources:'
print('\n\nSources:')
for source in llm_response["source_documents"]:
sources.join(source.metadata['source'])
print(wrap_text.join(sources))
return wrap_text.replace("<pad>","")
if __name__=="__main__":
get_lpphelper_chain()