Spaces:
Sleeping
Sleeping
File size: 1,162 Bytes
49619a7 80b963b 79b87e2 80b963b 49619a7 0907920 80b963b 0907920 80b963b 49619a7 a9e59f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
def load_models():
models = {}
models['SimpleNN_model'] = tf.keras.models.load_model("Model_catsVSdogs.h5")
models['VGG16'] = tf.keras.models.load_model("vgg16.h5")
return models
models = load_models()
def predict_image(img, model_name):
model = models[model_name]
if model_name == 'SimpleNN_model':
img = img.resize((256, 256))
elif model_name == 'VGG16':
img = img.resize((224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255.0
prediction = model.predict(img_array)
if prediction[0] < 0.5:
return "Cat"
else:
return "Dog"
interface = gr.Interface(fn=predict_image,
inputs=[gr.Image(type="pil"), gr.Dropdown(["SimpleNN_model", "VGG16"], label="Select Model")],
outputs="text",
title="Cat and Dog Classifier",
description="Upload an Image")
interface.launch(share=True)
|