sudip2003's picture
Create app.py
49619a7 verified
raw
history blame
958 Bytes
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
# Load the trained model
model = tf.keras.models.load_model('cat_dog_classifier_vgg16.h5')
# Define a function to make predictions
def predict_image(img):
# Preprocess the image
img = img.resize((224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255.0
# Make a prediction
prediction = model.predict(img_array)
if prediction[0] < 0.5:
return "Cat"
else:
return "Dog"
# Create the Gradio interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.inputs.Image(type="pil"),
outputs="text",
title="Cat and Dog Classifier",
description="Upload an image of a cat or a dog and the model will classify it.",
examples=["cat_example.jpg", "dog_example.jpg"]
)
# Launch the interface
iface.launch()