Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
# Load the trained model | |
model = tf.keras.models.load_model('cat_dog_classifier_vgg16.h5') | |
# Define a function to make predictions | |
def predict_image(img): | |
# Preprocess the image | |
img = img.resize((224, 224)) | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array / 255.0 | |
# Make a prediction | |
prediction = model.predict(img_array) | |
if prediction[0] < 0.5: | |
return "Cat" | |
else: | |
return "Dog" | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs="text", | |
title="Cat and Dog Classifier", | |
description="Upload an image of a cat or a dog and the model will classify it.", | |
examples=["cat_example.jpg", "dog_example.jpg"] | |
) | |
# Launch the interface | |
iface.launch() | |