sudo-soldier commited on
Commit
6ec98d8
·
verified ·
1 Parent(s): 724f908

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -15
app.py CHANGED
@@ -1,26 +1,135 @@
1
  import gradio as gr
 
 
 
 
 
 
2
  import os
3
 
 
 
4
 
5
- def load_mesh(mesh_file_name):
6
- return mesh_file_name
7
 
 
 
 
 
 
 
8
 
9
- demo = gr.Interface(
10
- fn=load_mesh,
11
- inputs=gr.Model3D(),
12
- outputs=gr.Model3D(
13
- clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
14
- examples=[
15
- [os.path.join(os.path.dirname(__file__), "files/model1.glb")],
16
- [os.path.join(os.path.dirname(__file__), "files/model2.glb")],
17
- [os.path.join(os.path.dirname(__file__), "files/model3.glb")],
18
- [os.path.join(os.path.dirname(__file__), "files/model4.glb")],
19
- ],
20
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  if __name__ == "__main__":
23
- demo.launch()
 
24
 
25
 
26
 
 
1
  import gradio as gr
2
+ from transformers import DPTFeatureExtractor, DPTForDepthEstimation
3
+ import torch
4
+ import numpy as np
5
+ from PIL import Image
6
+ import open3d as o3d
7
+ from pathlib import Path
8
  import os
9
 
10
+ feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
11
+ model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
12
 
 
 
13
 
14
+ def process_image(image_path):
15
+ image_path = Path(image_path)
16
+ image_raw = Image.open(image_path)
17
+ image = image_raw.resize(
18
+ (800, int(800 * image_raw.size[1] / image_raw.size[0])),
19
+ Image.Resampling.LANCZOS)
20
 
21
+ # prepare image for the model
22
+ encoding = feature_extractor(image, return_tensors="pt")
23
+
24
+ # forward pass
25
+ with torch.no_grad():
26
+ outputs = model(**encoding)
27
+ predicted_depth = outputs.predicted_depth
28
+
29
+ # interpolate to original size
30
+ prediction = torch.nn.functional.interpolate(
31
+ predicted_depth.unsqueeze(1),
32
+ size=image.size[::-1],
33
+ mode="bicubic",
34
+ align_corners=False,
35
+ ).squeeze()
36
+ output = prediction.cpu().numpy()
37
+ depth_image = (output * 255 / np.max(output)).astype('uint8')
38
+ try:
39
+ gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
40
+ img = Image.fromarray(depth_image)
41
+ return [img, gltf_path, gltf_path]
42
+ except Exception as e:
43
+ gltf_path = create_3d_obj(
44
+ np.array(image), depth_image, image_path, depth=8)
45
+ img = Image.fromarray(depth_image)
46
+ return [img, gltf_path, gltf_path]
47
+ except:
48
+ print("Error reconstructing 3D model")
49
+ raise Exception("Error reconstructing 3D model")
50
+
51
+
52
+ def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
53
+ depth_o3d = o3d.geometry.Image(depth_image)
54
+ image_o3d = o3d.geometry.Image(rgb_image)
55
+ rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
56
+ image_o3d, depth_o3d, convert_rgb_to_intensity=False)
57
+ w = int(depth_image.shape[1])
58
+ h = int(depth_image.shape[0])
59
+
60
+ camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
61
+ camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
62
+
63
+ pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
64
+ rgbd_image, camera_intrinsic)
65
+
66
+ print('normals')
67
+ pcd.normals = o3d.utility.Vector3dVector(
68
+ np.zeros((1, 3))) # invalidate existing normals
69
+ pcd.estimate_normals(
70
+ search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
71
+ pcd.orient_normals_towards_camera_location(
72
+ camera_location=np.array([0., 0., 1000.]))
73
+ pcd.transform([[1, 0, 0, 0],
74
+ [0, -1, 0, 0],
75
+ [0, 0, -1, 0],
76
+ [0, 0, 0, 1]])
77
+ pcd.transform([[-1, 0, 0, 0],
78
+ [0, 1, 0, 0],
79
+ [0, 0, 1, 0],
80
+ [0, 0, 0, 1]])
81
+
82
+ print('run Poisson surface reconstruction')
83
+ with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
84
+ mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
85
+ pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
86
+
87
+ voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
88
+ print(f'voxel_size = {voxel_size:e}')
89
+ mesh = mesh_raw.simplify_vertex_clustering(
90
+ voxel_size=voxel_size,
91
+ contraction=o3d.geometry.SimplificationContraction.Average)
92
+
93
+ # vertices_to_remove = densities < np.quantile(densities, 0.001)
94
+ # mesh.remove_vertices_by_mask(vertices_to_remove)
95
+ bbox = pcd.get_axis_aligned_bounding_box()
96
+ mesh_crop = mesh.crop(bbox)
97
+ gltf_path = f'./{image_path.stem}.gltf'
98
+ o3d.io.write_triangle_mesh(
99
+ gltf_path, mesh_crop, write_triangle_uvs=True)
100
+ return gltf_path
101
+
102
+
103
+ title = "zero-shot depth estimation with DPT + 3D Point Cloud"
104
+ description = "DPT model to predict the depth of an image and then 3D Point Cloud to create a 3D object."
105
+
106
+ # Add both image and model examples
107
+ examples = [
108
+ ["examples/" + img] for img in os.listdir("examples/")
109
+ ] + [
110
+ [os.path.join(os.path.dirname(__file__), "files/model1.glb")],
111
+ [os.path.join(os.path.dirname(__file__), "files/model2.glb")],
112
+ [os.path.join(os.path.dirname(__file__), "files/model3.glb")],
113
+ [os.path.join(os.path.dirname(__file__), "files/model4.glb")],
114
+ ["https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat"],
115
+ ]
116
+
117
+ iface = gr.Interface(fn=process_image,
118
+ inputs=[gr.Image(
119
+ type="filepath", label="Input Image")],
120
+ outputs=[gr.Image(label="predicted depth", type="pil"),
121
+ gr.Model3D(label="3d mesh reconstruction", clear_color=[
122
+ 1.0, 1.0, 1.0, 1.0]),
123
+ gr.File(label="3d gLTF")],
124
+ title=title,
125
+ description=description,
126
+ examples=examples,
127
+ allow_flagging="never",
128
+ cache_examples=False)
129
 
130
  if __name__ == "__main__":
131
+ iface.launch()
132
+
133
 
134
 
135