sugiv's picture
Leetmonkey In Action via Inference
3f58090
raw
history blame
6.85 kB
import os
import re
import logging
import textwrap
import autopep8
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import jwt
from typing import Generator
from fastapi import FastAPI, HTTPException, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
import spaces
import torch
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# JWT settings
JWT_SECRET = os.environ.get("JWT_SECRET")
if not JWT_SECRET:
raise ValueError("JWT_SECRET environment variable is not set")
JWT_ALGORITHM = "HS256"
# Model settings
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
REPO_ID = "sugiv/leetmonkey-peft-gguf"
# Generation parameters
generation_kwargs = {
"max_tokens": 2048,
"stop": ["```", "### Instruction:", "### Response:"],
"echo": False,
"temperature": 0.2,
"top_k": 50,
"top_p": 0.95,
"repeat_penalty": 1.1
}
def download_model(model_name: str) -> str:
logger.info(f"Downloading model: {model_name}")
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=model_name,
cache_dir="./models",
force_download=True,
resume_download=True
)
logger.info(f"Model downloaded: {model_path}")
return model_path
# Download and load the 8-bit model at startup
model_path = download_model(MODEL_NAME)
@spaces.GPU
def load_model(model_path):
return Llama(
model_path=model_path,
n_ctx=2048,
n_threads=4,
n_gpu_layers=-1, # Use all available GPU layers
verbose=False
)
llm = load_model(model_path)
logger.info("8-bit model loaded successfully")
@spaces.GPU
def generate_solution(instruction: str) -> str:
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
full_prompt = f"""### Instruction:
{system_prompt}
Implement the following function for the LeetCode problem:
{instruction}
### Response:
Here's the complete Python function implementation:
```python
"""
response = llm(full_prompt, **generation_kwargs)
return response["choices"][0]["text"]
def extract_and_format_code(text: str) -> str:
# Extract code between triple backticks
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
if code_match:
code = code_match.group(1)
else:
code = text
# Remove any text before the function definition
code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)
# Dedent the code to remove any common leading whitespace
code = textwrap.dedent(code)
# Split the code into lines
lines = code.split('\n')
# Find the function definition line
func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)
# Ensure proper indentation
indented_lines = [lines[func_def_index]] # Keep the function definition as is
for line in lines[func_def_index + 1:]:
if line.strip(): # If the line is not empty
indented_lines.append(' ' + line) # Add 4 spaces of indentation
else:
indented_lines.append(line) # Keep empty lines as is
formatted_code = '\n'.join(indented_lines)
try:
return autopep8.fix_code(formatted_code)
except:
return formatted_code
security = HTTPBearer()
app = FastAPI()
class ProblemRequest(BaseModel):
instruction: str
def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
try:
jwt.decode(credentials.credentials, JWT_SECRET, algorithms=[JWT_ALGORITHM])
return True
except jwt.PyJWTError:
raise HTTPException(status_code=401, detail="Invalid token")
@app.post("/generate_solution")
async def generate_solution_api(request: ProblemRequest, authorized: bool = Depends(verify_token)):
logger.info("Generating solution")
generated_output = generate_solution(request.instruction)
formatted_code = extract_and_format_code(generated_output)
logger.info("Solution generated successfully")
return {"solution": formatted_code}
@app.post("/stream_solution")
async def stream_solution_api(request: ProblemRequest, authorized: bool = Depends(verify_token)):
async def generate():
logger.info("Streaming solution")
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
full_prompt = f"""### Instruction:
{system_prompt}
Implement the following function for the LeetCode problem:
{request.instruction}
### Response:
Here's the complete Python function implementation:
```python
"""
generated_text = ""
for chunk in llm(full_prompt, stream=True, **generation_kwargs):
token = chunk["choices"]["text"]
generated_text += token
yield token
formatted_code = extract_and_format_code(generated_text)
logger.info("Solution generated successfully")
yield formatted_code
return generate()
# Gradio wrapper for FastAPI
def gradio_wrapper(app):
def inference(instruction, token):
import requests
url = "http://localhost:8000/generate_solution"
headers = {"Authorization": f"Bearer {token}"}
response = requests.post(url, json={"instruction": instruction}, headers=headers)
if response.status_code == 200:
return response.json()["solution"]
else:
return f"Error: {response.status_code}, {response.text}"
iface = gr.Interface(
fn=inference,
inputs=[
gr.Textbox(label="LeetCode Problem Instruction"),
gr.Textbox(label="JWT Token")
],
outputs=gr.Code(label="Generated Solution"),
title="LeetCode Problem Solver API",
description="Enter a LeetCode problem instruction and your JWT token to generate a solution."
)
return iface
@spaces.GPU
def main():
# Verify GPU availability
zero = torch.Tensor().cuda()
print(f"GPU availability: {zero.device}")
# Download and load the model
model_path = download_model(MODEL_NAME)
global llm
llm = load_model(model_path)
logger.info("8-bit model loaded successfully")
# Start FastAPI in a separate thread
Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=8000)).start()
# Launch Gradio interface
iface = gradio_wrapper(app)
iface.launch(share=True)
if __name__ == "__main__":
main()