Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,18 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
13 |
-
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
14 |
-
generated_text = result[0]['generated_text']
|
15 |
-
return generated_text
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
with st.spinner("Generating response..."): # Display a spinner while generating response
|
24 |
-
response = generate_text(prompt_input)
|
25 |
-
st.write("Generated Response:")
|
26 |
-
st.write(response)
|
27 |
-
else:
|
28 |
-
st.write("Please enter a prompt.")
|
|
|
|
|
|
|
1 |
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
|
|
|
|
4 |
|
5 |
+
# Load your model from the Hugging Face model hub
|
6 |
+
model_name = "sujra/insurance_Model"
|
7 |
+
qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name)
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def get_answer(question):
|
10 |
+
answer = qa_pipeline(question=question, max_length=128, batch_size=4)['answer'] # Reduce batch size and set max_length
|
11 |
+
return answer
|
12 |
|
13 |
+
# Define the input and output components for the UI
|
14 |
+
question_input = gr.inputs.Textbox(lines=2, label="Enter your question")
|
15 |
+
output_text = gr.outputs.Textbox(label="Answer")
|
16 |
|
17 |
+
# Create the UI
|
18 |
+
gr.Interface(fn=get_answer, inputs=question_input, outputs=output_text, title="Insurance Question Answering").launch()
|
|
|
|
|
|
|
|
|
|
|
|