AnemiaDetection / app.py
sunil18p31a0101's picture
Update app.py
fcb2284 verified
raw
history blame
4.62 kB
import gradio as gr
import pandas as pd
import numpy as np
import joblib
import os
from skimage.measure import shannon_entropy
from skimage.color import rgb2hsv
from scipy.ndimage import generic_filter
import cv2
# Function to extract features from the image
def extract_features(image_path):
# Load image and convert to RGB
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Extract RGB means
meanr = np.mean(image[:, :, 0]) # Red channel
meang = np.mean(image[:, :, 1]) # Green channel
meanb = np.mean(image[:, :, 2]) # Blue channel
# Convert to HSI and compute HHR
hsv_image = rgb2hsv(image)
hue = hsv_image[:, :, 0]
high_hue_pixels = np.sum(hue > 0.95)
total_pixels = hue.size
HHR = high_hue_pixels / total_pixels
# Convert to Grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Compute Entropy
Ent = shannon_entropy(gray_image)
# Compute Brightness
B = np.mean(gray_image)
# Sliding window for gray-level features
def g1_filter(window):
return window[4] - np.min(window)
def g2_filter(window):
return np.max(window) - window[4]
def g3_filter(window):
return window[4] - np.mean(window)
def g4_filter(window):
return np.std(window)
def g5_filter(window):
return window[4]
# Apply filters with 3x3 window
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
# Return features
return {
"meanr": meanr,
"meang": meang,
"meanb": meanb,
"HHR": HHR,
"Ent": Ent,
"B": B,
"g1": g1,
"g2": g2,
"g3": g3,
"g4": g4,
"g5": g5,
}
# Function to check if the image is a valid file format
def check_image_format(image):
try:
img = cv2.imread(image)
if img is not None:
return True
else:
return False
except Exception as e:
return False
# Function to predict hemoglobin value
def predict_hemoglobin(age, gender, image):
print(f"Image path: {image}") # Debugging line to check the image path
# Check if the image file is valid
if not check_image_format(image):
return "Error: The uploaded image file is not recognized or is corrupt."
# Extract features from the image
features = extract_features(image)
# Ensure gender is encoded correctly (0 for female, 1 for male)
features['Gender'] = 1 if gender.lower() == 'M' else 0
features['Age'] = age
# Create a DataFrame for features (do not include Hgb, as it's the predicted value)
features_df = pd.DataFrame([features])
# Load the trained model, scaler, and label encoder
svr_model = joblib.load('svr_model (1).pkl')
scaler = joblib.load('minmax_scaler.pkl')
label_encoder = joblib.load('label_encoder.pkl')
# Ensure that features_df matches the expected training feature set (without 'Hgb')
expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
for col in expected_columns:
if col not in features_df:
features_df[col] = 0 # Or some default value to match the expected columns.
features_df = features_df[expected_columns] # Ensure the correct order of columns
# Apply scaling (do not include 'Hgb' as it is the target)
features_df_scaled = scaler.transform(features_df)
# Predict hemoglobin using the trained SVR model
hemoglobin = svr_model.predict(features_df_scaled)[0]
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
# Gradio Interface setup
def create_gradio_interface():
# Define the inputs and outputs for the Gradio interface
image_input = gr.Image(type="filepath", label="Image (Path to Image)", interactive=True)
age_input = gr.Number(label="Age", value=25, precision=0)
gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
# Set up the Gradio interface with the prediction function
gr.Interface(fn=predict_hemoglobin,
inputs=[age_input, gender_input, image_input],
outputs="text",
live=True).launch(share=True)
# Run the Gradio app
if __name__ == "__main__":
create_gradio_interface()