AnemiaDetection / app.py
sunil18p31a0101's picture
Update app.py
3e6074c verified
import gradio as gr
import pandas as pd
import numpy as np
import joblib
from skimage.measure import shannon_entropy
from skimage.color import rgb2hsv
from scipy.ndimage import generic_filter
import cv2
from PIL import Image
from sklearn.preprocessing import LabelEncoder
# Load trained model and scaler
model = joblib.load('lgbm_model.pkl') # Replace with actual path
scaler = joblib.load('minmax_scaler.pkl') # Replace with actual path
# Define the expected feature names manually
expected_features = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B',
'g1', 'g2', 'g3', 'g4', 'g5', 'Age'] # No 'Hgb'
# Include 'Gender' if it was used during training
use_gender = True # Set to False if your model was not trained with 'Gender'
if use_gender:
expected_features.append('Gender')
# Initialize LabelEncoder for gender encoding (if used in training)
gender_encoder = LabelEncoder()
gender_encoder.fit(['Female', 'Male'])
# Function to extract features
def extract_features(image):
image = np.array(image)
meanr = np.mean(image[:, :, 0])
meang = np.mean(image[:, :, 1])
meanb = np.mean(image[:, :, 2])
hsv_image = rgb2hsv(image)
hue = hsv_image[:, :, 0]
high_hue_pixels = np.sum(hue > 0.95)
total_pixels = hue.size
HHR = high_hue_pixels / total_pixels
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
Ent = shannon_entropy(gray_image)
B = np.mean(gray_image)
def g1_filter(window): return window[4] - np.min(window)
def g2_filter(window): return np.max(window) - window[4]
def g3_filter(window): return window[4] - np.mean(window)
def g4_filter(window): return np.std(window)
def g5_filter(window): return window[4]
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
return {
"meanr": meanr, "meang": meang, "meanb": meanb,
"HHR": HHR, "Ent": Ent, "B": B, "g1": g1,
"g2": g2, "g3": g3, "g4": g4, "g5": g5,
}
# Prediction function
def predict_hemoglobin(age, gender, image):
try:
if image is None:
return "Error: No image uploaded. Please upload an image."
if not isinstance(image, Image.Image):
return "Error: Invalid image format. Please upload a valid image file."
# Extract features
features = extract_features(image)
# Encode gender only if used in training
if use_gender:
features["Gender"] = gender_encoder.transform([gender])[0]
features["Age"] = age
# Convert to DataFrame
features_df = pd.DataFrame([features])
# Ensure only model-expected features are used
for col in expected_features:
if col not in features_df:
features_df[col] = 0 # Add missing columns with default value
features_df = features_df[expected_features] # Ensure correct column order
# Apply scaling
features_scaled = scaler.transform(features_df)
# Predict hemoglobin
hemoglobin = model.predict(features_scaled)[0]
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
except Exception as e:
print(f"Error during prediction: {e}")
return "An error occurred. Please check inputs and try again."
# Gradio interface
with gr.Blocks() as anemia_detection_app:
gr.Markdown("# Hemoglobin Prediction App")
with gr.Row():
age_input = gr.Number(label="Age", value=25)
gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male", type="value")
image_input = gr.Image(label="Upload Retinal Image", type="pil")
output_text = gr.Textbox(label="Predicted Hemoglobin Value")
predict_button = gr.Button("Predict")
predict_button.click(
fn=predict_hemoglobin,
inputs=[age_input, gender_input, image_input],
outputs=output_text
)
# Run the app
if __name__ == "__main__":
anemia_detection_app.launch(share=True) # Enable public link