Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import joblib | |
from skimage.measure import shannon_entropy | |
from skimage.color import rgb2hsv | |
from scipy.ndimage import generic_filter | |
import cv2 | |
from PIL import Image | |
from sklearn.preprocessing import LabelEncoder | |
# Load trained model and scaler | |
model = joblib.load('lgbm_model.pkl') # Replace with actual path | |
scaler = joblib.load('minmax_scaler.pkl') # Replace with actual path | |
# Define the expected feature names manually | |
expected_features = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', | |
'g1', 'g2', 'g3', 'g4', 'g5', 'Age'] # No 'Hgb' | |
# Include 'Gender' if it was used during training | |
use_gender = True # Set to False if your model was not trained with 'Gender' | |
if use_gender: | |
expected_features.append('Gender') | |
# Initialize LabelEncoder for gender encoding (if used in training) | |
gender_encoder = LabelEncoder() | |
gender_encoder.fit(['Female', 'Male']) | |
# Function to extract features | |
def extract_features(image): | |
image = np.array(image) | |
meanr = np.mean(image[:, :, 0]) | |
meang = np.mean(image[:, :, 1]) | |
meanb = np.mean(image[:, :, 2]) | |
hsv_image = rgb2hsv(image) | |
hue = hsv_image[:, :, 0] | |
high_hue_pixels = np.sum(hue > 0.95) | |
total_pixels = hue.size | |
HHR = high_hue_pixels / total_pixels | |
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
Ent = shannon_entropy(gray_image) | |
B = np.mean(gray_image) | |
def g1_filter(window): return window[4] - np.min(window) | |
def g2_filter(window): return np.max(window) - window[4] | |
def g3_filter(window): return window[4] - np.mean(window) | |
def g4_filter(window): return np.std(window) | |
def g5_filter(window): return window[4] | |
g1 = generic_filter(gray_image, g1_filter, size=3).mean() | |
g2 = generic_filter(gray_image, g2_filter, size=3).mean() | |
g3 = generic_filter(gray_image, g3_filter, size=3).mean() | |
g4 = generic_filter(gray_image, g4_filter, size=3).mean() | |
g5 = generic_filter(gray_image, g5_filter, size=3).mean() | |
return { | |
"meanr": meanr, "meang": meang, "meanb": meanb, | |
"HHR": HHR, "Ent": Ent, "B": B, "g1": g1, | |
"g2": g2, "g3": g3, "g4": g4, "g5": g5, | |
} | |
# Prediction function | |
def predict_hemoglobin(age, gender, image): | |
try: | |
if image is None: | |
return "Error: No image uploaded. Please upload an image." | |
if not isinstance(image, Image.Image): | |
return "Error: Invalid image format. Please upload a valid image file." | |
# Extract features | |
features = extract_features(image) | |
# Encode gender only if used in training | |
if use_gender: | |
features["Gender"] = gender_encoder.transform([gender])[0] | |
features["Age"] = age | |
# Convert to DataFrame | |
features_df = pd.DataFrame([features]) | |
# Ensure only model-expected features are used | |
for col in expected_features: | |
if col not in features_df: | |
features_df[col] = 0 # Add missing columns with default value | |
features_df = features_df[expected_features] # Ensure correct column order | |
# Apply scaling | |
features_scaled = scaler.transform(features_df) | |
# Predict hemoglobin | |
hemoglobin = model.predict(features_scaled)[0] | |
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}" | |
except Exception as e: | |
print(f"Error during prediction: {e}") | |
return "An error occurred. Please check inputs and try again." | |
# Gradio interface | |
with gr.Blocks() as anemia_detection_app: | |
gr.Markdown("# Hemoglobin Prediction App") | |
with gr.Row(): | |
age_input = gr.Number(label="Age", value=25) | |
gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male", type="value") | |
image_input = gr.Image(label="Upload Retinal Image", type="pil") | |
output_text = gr.Textbox(label="Predicted Hemoglobin Value") | |
predict_button = gr.Button("Predict") | |
predict_button.click( | |
fn=predict_hemoglobin, | |
inputs=[age_input, gender_input, image_input], | |
outputs=output_text | |
) | |
# Run the app | |
if __name__ == "__main__": | |
anemia_detection_app.launch(share=True) # Enable public link | |