Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,14 @@
|
|
1 |
-
import
|
2 |
-
import cv2
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
-
import
|
7 |
from skimage.color import rgb2hsv
|
8 |
from skimage.measure import shannon_entropy
|
9 |
from scipy.ndimage import generic_filter
|
10 |
|
11 |
-
#
|
12 |
def extract_features(image_path):
|
13 |
-
# Load image and convert to RGB
|
14 |
image = cv2.imread(image_path)
|
15 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
16 |
|
@@ -58,7 +56,7 @@ def extract_features(image_path):
|
|
58 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
59 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
60 |
|
61 |
-
# Return
|
62 |
return {
|
63 |
"meanr": meanr,
|
64 |
"meang": meang,
|
@@ -73,10 +71,10 @@ def extract_features(image_path):
|
|
73 |
"g5": g5,
|
74 |
}
|
75 |
|
76 |
-
# Function to
|
77 |
def predict_hemoglobin(age, gender, image):
|
78 |
# Extract features from the image
|
79 |
-
features = extract_features(image
|
80 |
|
81 |
# Add age and gender to the features
|
82 |
features['age'] = age
|
@@ -85,37 +83,39 @@ def predict_hemoglobin(age, gender, image):
|
|
85 |
# Convert features to DataFrame
|
86 |
features_df = pd.DataFrame([features])
|
87 |
|
88 |
-
# Load pre-trained models
|
89 |
svr_model = joblib.load('svr_model.pkl') # SVR model
|
90 |
-
scaler = joblib.load('
|
91 |
label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder
|
92 |
|
93 |
# Apply MinMaxScaler transformation
|
94 |
features_df_scaled = scaler.transform(features_df)
|
95 |
|
96 |
-
#
|
97 |
hemoglobin = svr_model.predict(features_df_scaled)[0]
|
98 |
|
99 |
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
100 |
|
101 |
# Gradio Interface
|
102 |
-
def
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
gr.Interface(
|
113 |
-
fn=predict_hemoglobin,
|
114 |
-
inputs=[age_input, gender_input, image_input],
|
115 |
-
outputs=output,
|
116 |
-
live=True
|
117 |
-
).launch()
|
118 |
|
119 |
-
#
|
120 |
if __name__ == "__main__":
|
121 |
-
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
+
import cv2
|
6 |
from skimage.color import rgb2hsv
|
7 |
from skimage.measure import shannon_entropy
|
8 |
from scipy.ndimage import generic_filter
|
9 |
|
10 |
+
# Extract features from the image (same as your previous code)
|
11 |
def extract_features(image_path):
|
|
|
12 |
image = cv2.imread(image_path)
|
13 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
14 |
|
|
|
56 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
57 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
58 |
|
59 |
+
# Return features
|
60 |
return {
|
61 |
"meanr": meanr,
|
62 |
"meang": meang,
|
|
|
71 |
"g5": g5,
|
72 |
}
|
73 |
|
74 |
+
# Function to make predictions
|
75 |
def predict_hemoglobin(age, gender, image):
|
76 |
# Extract features from the image
|
77 |
+
features = extract_features(image) # Use the file path directly
|
78 |
|
79 |
# Add age and gender to the features
|
80 |
features['age'] = age
|
|
|
83 |
# Convert features to DataFrame
|
84 |
features_df = pd.DataFrame([features])
|
85 |
|
86 |
+
# Load the pre-trained models
|
87 |
svr_model = joblib.load('svr_model.pkl') # SVR model
|
88 |
+
scaler = joblib.load('scaler.pkl') # MinMaxScaler
|
89 |
label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder
|
90 |
|
91 |
# Apply MinMaxScaler transformation
|
92 |
features_df_scaled = scaler.transform(features_df)
|
93 |
|
94 |
+
# Make the prediction
|
95 |
hemoglobin = svr_model.predict(features_df_scaled)[0]
|
96 |
|
97 |
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
98 |
|
99 |
# Gradio Interface
|
100 |
+
def gradio_interface():
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("## Hemoglobin Prediction from Image Features")
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
age = gr.Number(label="Age", value=25)
|
106 |
+
gender = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male")
|
107 |
+
|
108 |
+
image_input = gr.Image(type="filepath", label="Upload Image (Path to Image)", interactive=True)
|
109 |
+
|
110 |
+
output = gr.Textbox(label="Predicted Hemoglobin Value")
|
111 |
+
|
112 |
+
# Prediction button
|
113 |
+
predict_btn = gr.Button("Predict Hemoglobin")
|
114 |
+
|
115 |
+
predict_btn.click(fn=predict_hemoglobin, inputs=[age, gender, image_input], outputs=output)
|
116 |
|
117 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# Launch the app
|
120 |
if __name__ == "__main__":
|
121 |
+
gradio_interface().launch(share=True) # Set `share=True` to create a public link
|