Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,106 +9,89 @@ import cv2
|
|
9 |
from PIL import Image
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
gender_encoder = LabelEncoder()
|
14 |
-
gender_encoder.fit(['Female', 'Male']) #
|
15 |
|
16 |
-
# Function to extract features
|
17 |
def extract_features(image):
|
18 |
-
# Convert PIL image to NumPy array
|
19 |
image = np.array(image)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
meanb = np.mean(image[:, :, 2])
|
25 |
|
26 |
-
# Convert to HSI and compute HHR
|
27 |
hsv_image = rgb2hsv(image)
|
28 |
hue = hsv_image[:, :, 0]
|
29 |
high_hue_pixels = np.sum(hue > 0.95)
|
30 |
total_pixels = hue.size
|
31 |
HHR = high_hue_pixels / total_pixels
|
32 |
|
33 |
-
# Convert to Grayscale
|
34 |
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
35 |
|
36 |
-
# Compute Entropy
|
37 |
Ent = shannon_entropy(gray_image)
|
38 |
-
|
39 |
-
# Compute Brightness
|
40 |
B = np.mean(gray_image)
|
41 |
|
42 |
-
# Define sliding window filters
|
43 |
def g1_filter(window): return window[4] - np.min(window)
|
44 |
def g2_filter(window): return np.max(window) - window[4]
|
45 |
def g3_filter(window): return window[4] - np.mean(window)
|
46 |
def g4_filter(window): return np.std(window)
|
47 |
def g5_filter(window): return window[4]
|
48 |
|
49 |
-
# Apply filters with 3x3 window
|
50 |
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
|
51 |
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
|
52 |
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
|
53 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
54 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
55 |
|
56 |
-
# Return extracted features
|
57 |
return {
|
58 |
"meanr": meanr, "meang": meang, "meanb": meanb,
|
59 |
"HHR": HHR, "Ent": Ent, "B": B, "g1": g1,
|
60 |
"g2": g2, "g3": g3, "g4": g4, "g5": g5,
|
61 |
}
|
62 |
|
63 |
-
#
|
64 |
def predict_hemoglobin(age, gender, image):
|
65 |
try:
|
66 |
-
# Validate image input
|
67 |
if image is None:
|
68 |
return "Error: No image uploaded. Please upload an image."
|
69 |
|
70 |
if not isinstance(image, Image.Image):
|
71 |
return "Error: Invalid image format. Please upload a valid image file."
|
72 |
|
73 |
-
#
|
74 |
-
if gender not in ["Male", "Female"]:
|
75 |
-
return "Error: Invalid gender selected."
|
76 |
-
|
77 |
-
print(f"Received Gender: {gender}") # Debugging line
|
78 |
-
|
79 |
-
# Extract features from the image
|
80 |
features = extract_features(image)
|
81 |
-
|
82 |
-
# Encode gender
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
|
86 |
# Convert to DataFrame
|
87 |
features_df = pd.DataFrame([features])
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
scaler = joblib.load('minmax_scaler.pkl') # Replace with actual path
|
92 |
-
|
93 |
-
# Ensure features match expected columns
|
94 |
-
expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
|
95 |
-
for col in expected_columns:
|
96 |
-
if col not in features_df:
|
97 |
-
features_df[col] = 0 # Assign default value if missing
|
98 |
-
|
99 |
-
features_df = features_df[expected_columns] # Ensure correct column order
|
100 |
|
101 |
# Apply scaling
|
102 |
-
|
103 |
|
104 |
# Predict hemoglobin
|
105 |
-
hemoglobin = model.predict(
|
106 |
|
107 |
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
108 |
|
109 |
except Exception as e:
|
110 |
-
print(f"
|
111 |
-
return "An error occurred
|
112 |
|
113 |
# Gradio interface
|
114 |
with gr.Blocks() as anemia_detection_app:
|
@@ -116,7 +99,7 @@ with gr.Blocks() as anemia_detection_app:
|
|
116 |
|
117 |
with gr.Row():
|
118 |
age_input = gr.Number(label="Age", value=25)
|
119 |
-
gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male", type="value")
|
120 |
|
121 |
image_input = gr.Image(label="Upload Retinal Image", type="pil")
|
122 |
output_text = gr.Textbox(label="Predicted Hemoglobin Value")
|
|
|
9 |
from PIL import Image
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
|
12 |
+
# Load trained model and scaler
|
13 |
+
model = joblib.load('lgbm_model.pkl') # Replace with actual path
|
14 |
+
scaler = joblib.load('minmax_scaler.pkl') # Replace with actual path
|
15 |
+
|
16 |
+
# Get expected feature names from the model
|
17 |
+
expected_features = model.feature_name_ # Extracts trained feature names
|
18 |
+
|
19 |
+
# Initialize LabelEncoder for gender encoding (if used in training)
|
20 |
gender_encoder = LabelEncoder()
|
21 |
+
gender_encoder.fit(['Female', 'Male']) # Ensure correct mapping
|
22 |
|
23 |
+
# Function to extract features
|
24 |
def extract_features(image):
|
|
|
25 |
image = np.array(image)
|
26 |
|
27 |
+
meanr = np.mean(image[:, :, 0])
|
28 |
+
meang = np.mean(image[:, :, 1])
|
29 |
+
meanb = np.mean(image[:, :, 2])
|
|
|
30 |
|
|
|
31 |
hsv_image = rgb2hsv(image)
|
32 |
hue = hsv_image[:, :, 0]
|
33 |
high_hue_pixels = np.sum(hue > 0.95)
|
34 |
total_pixels = hue.size
|
35 |
HHR = high_hue_pixels / total_pixels
|
36 |
|
|
|
37 |
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
38 |
|
|
|
39 |
Ent = shannon_entropy(gray_image)
|
|
|
|
|
40 |
B = np.mean(gray_image)
|
41 |
|
|
|
42 |
def g1_filter(window): return window[4] - np.min(window)
|
43 |
def g2_filter(window): return np.max(window) - window[4]
|
44 |
def g3_filter(window): return window[4] - np.mean(window)
|
45 |
def g4_filter(window): return np.std(window)
|
46 |
def g5_filter(window): return window[4]
|
47 |
|
|
|
48 |
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
|
49 |
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
|
50 |
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
|
51 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
52 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
53 |
|
|
|
54 |
return {
|
55 |
"meanr": meanr, "meang": meang, "meanb": meanb,
|
56 |
"HHR": HHR, "Ent": Ent, "B": B, "g1": g1,
|
57 |
"g2": g2, "g3": g3, "g4": g4, "g5": g5,
|
58 |
}
|
59 |
|
60 |
+
# Prediction function
|
61 |
def predict_hemoglobin(age, gender, image):
|
62 |
try:
|
|
|
63 |
if image is None:
|
64 |
return "Error: No image uploaded. Please upload an image."
|
65 |
|
66 |
if not isinstance(image, Image.Image):
|
67 |
return "Error: Invalid image format. Please upload a valid image file."
|
68 |
|
69 |
+
# Extract features
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
features = extract_features(image)
|
71 |
+
|
72 |
+
# Encode gender only if the model was trained with it
|
73 |
+
if "Gender" in expected_features:
|
74 |
+
features["Gender"] = gender_encoder.transform([gender])[0]
|
75 |
+
|
76 |
+
features["Age"] = age
|
77 |
|
78 |
# Convert to DataFrame
|
79 |
features_df = pd.DataFrame([features])
|
80 |
|
81 |
+
# Ensure only model-expected features are used
|
82 |
+
features_df = features_df[expected_features] # Select only required columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Apply scaling
|
85 |
+
features_scaled = scaler.transform(features_df)
|
86 |
|
87 |
# Predict hemoglobin
|
88 |
+
hemoglobin = model.predict(features_scaled)[0]
|
89 |
|
90 |
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
91 |
|
92 |
except Exception as e:
|
93 |
+
print(f"Error during prediction: {e}")
|
94 |
+
return "An error occurred. Please check inputs and try again."
|
95 |
|
96 |
# Gradio interface
|
97 |
with gr.Blocks() as anemia_detection_app:
|
|
|
99 |
|
100 |
with gr.Row():
|
101 |
age_input = gr.Number(label="Age", value=25)
|
102 |
+
gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male", type="value")
|
103 |
|
104 |
image_input = gr.Image(label="Upload Retinal Image", type="pil")
|
105 |
output_text = gr.Textbox(label="Predicted Hemoglobin Value")
|