Spaces:
Runtime error
Runtime error
from torch.utils import data as data | |
from torchvision.transforms.functional import normalize | |
from basicsr.data.data_util import (paired_paths_from_folder, | |
paired_DP_paths_from_folder, | |
paired_paths_from_lmdb, | |
paired_paths_from_meta_info_file) | |
from basicsr.data.transforms import augment, paired_random_crop, paired_random_crop_DP, random_augmentation | |
from basicsr.utils import FileClient, imfrombytes, img2tensor, padding, padding_DP, imfrombytesDP | |
import random | |
import numpy as np | |
import torch | |
import cv2 | |
class Dataset_PairedImage(data.Dataset): | |
"""Paired image dataset for image restoration. | |
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and | |
GT image pairs. | |
There are three modes: | |
1. 'lmdb': Use lmdb files. | |
If opt['io_backend'] == lmdb. | |
2. 'meta_info_file': Use meta information file to generate paths. | |
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None. | |
3. 'folder': Scan folders to generate paths. | |
The rest. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
meta_info_file (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
filename_tmpl (str): Template for each filename. Note that the | |
template excludes the file extension. Default: '{}'. | |
gt_size (int): Cropped patched size for gt patches. | |
geometric_augs (bool): Use geometric augmentations. | |
scale (bool): Scale, which will be added automatically. | |
phase (str): 'train' or 'val'. | |
""" | |
def __init__(self, opt): | |
super(Dataset_PairedImage, self).__init__() | |
self.opt = opt | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.mean = opt['mean'] if 'mean' in opt else None | |
self.std = opt['std'] if 'std' in opt else None | |
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq'] | |
if 'filename_tmpl' in opt: | |
self.filename_tmpl = opt['filename_tmpl'] | |
else: | |
self.filename_tmpl = '{}' | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder] | |
self.io_backend_opt['client_keys'] = ['lq', 'gt'] | |
self.paths = paired_paths_from_lmdb( | |
[self.lq_folder, self.gt_folder], ['lq', 'gt']) | |
elif 'meta_info_file' in self.opt and self.opt[ | |
'meta_info_file'] is not None: | |
self.paths = paired_paths_from_meta_info_file( | |
[self.lq_folder, self.gt_folder], ['lq', 'gt'], | |
self.opt['meta_info_file'], self.filename_tmpl) | |
else: | |
self.paths = paired_paths_from_folder( | |
[self.lq_folder, self.gt_folder], ['lq', 'gt'], | |
self.filename_tmpl) | |
if self.opt['phase'] == 'train': | |
self.geometric_augs = opt['geometric_augs'] | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient( | |
self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
scale = self.opt['scale'] | |
index = index % len(self.paths) | |
# Load gt and lq images. Dimension order: HWC; channel order: BGR; | |
# image range: [0, 1], float32. | |
gt_path = self.paths[index]['gt_path'] | |
img_bytes = self.file_client.get(gt_path, 'gt') | |
try: | |
img_gt = imfrombytes(img_bytes, float32=True) | |
except: | |
raise Exception("gt path {} not working".format(gt_path)) | |
lq_path = self.paths[index]['lq_path'] | |
img_bytes = self.file_client.get(lq_path, 'lq') | |
try: | |
img_lq = imfrombytes(img_bytes, float32=True) | |
except: | |
raise Exception("lq path {} not working".format(lq_path)) | |
# augmentation for training | |
if self.opt['phase'] == 'train': | |
gt_size = self.opt['gt_size'] | |
# padding | |
img_gt, img_lq = padding(img_gt, img_lq, gt_size) | |
# random crop | |
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, | |
gt_path) | |
# flip, rotation augmentations | |
if self.geometric_augs: | |
img_gt, img_lq = random_augmentation(img_gt, img_lq) | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_gt, img_lq = img2tensor([img_gt, img_lq], | |
bgr2rgb=True, | |
float32=True) | |
# normalize | |
if self.mean is not None or self.std is not None: | |
normalize(img_lq, self.mean, self.std, inplace=True) | |
normalize(img_gt, self.mean, self.std, inplace=True) | |
label = self.get_label(lq_path,) | |
return { | |
'lq': img_lq, | |
'gt': img_gt, | |
'lq_path': lq_path, | |
'gt_path': gt_path, | |
'label': label | |
} | |
def get_label(self, lq_path): | |
img_name = lq_path.split("/")[-1] | |
if "im_" in img_name: | |
return 0 | |
elif '.jpg' in img_name: | |
return 1 | |
elif 'rain' in img_name: | |
return 2 | |
else: | |
return 4 | |
def __len__(self): | |
return len(self.paths) | |
class Dataset_GaussianDenoising(data.Dataset): | |
"""Paired image dataset for image restoration. | |
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and | |
GT image pairs. | |
There are three modes: | |
1. 'lmdb': Use lmdb files. | |
If opt['io_backend'] == lmdb. | |
2. 'meta_info_file': Use meta information file to generate paths. | |
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None. | |
3. 'folder': Scan folders to generate paths. | |
The rest. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
meta_info_file (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
gt_size (int): Cropped patched size for gt patches. | |
use_flip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h | |
and w for implementation). | |
scale (bool): Scale, which will be added automatically. | |
phase (str): 'train' or 'val'. | |
""" | |
def __init__(self, opt): | |
super(Dataset_GaussianDenoising, self).__init__() | |
self.opt = opt | |
if self.opt['phase'] == 'train': | |
self.sigma_type = opt['sigma_type'] | |
self.sigma_range = opt['sigma_range'] | |
assert self.sigma_type in ['constant', 'random', 'choice'] | |
else: | |
self.sigma_test = opt['sigma_test'] | |
self.in_ch = opt['in_ch'] | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.mean = opt['mean'] if 'mean' in opt else None | |
self.std = opt['std'] if 'std' in opt else None | |
self.gt_folder = opt['dataroot_gt'] | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.io_backend_opt['db_paths'] = [self.gt_folder] | |
self.io_backend_opt['client_keys'] = ['gt'] | |
self.paths = paths_from_lmdb(self.gt_folder) | |
elif 'meta_info_file' in self.opt: | |
with open(self.opt['meta_info_file'], 'r') as fin: | |
self.paths = [ | |
osp.join(self.gt_folder, | |
line.split(' ')[0]) for line in fin | |
] | |
else: | |
self.paths = sorted(list(scandir(self.gt_folder, full_path=True))) | |
if self.opt['phase'] == 'train': | |
self.geometric_augs = self.opt['geometric_augs'] | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient( | |
self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
scale = self.opt['scale'] | |
index = index % len(self.paths) | |
# Load gt and lq images. Dimension order: HWC; channel order: BGR; | |
# image range: [0, 1], float32. | |
gt_path = self.paths[index]['gt_path'] | |
img_bytes = self.file_client.get(gt_path, 'gt') | |
if self.in_ch == 3: | |
try: | |
img_gt = imfrombytes(img_bytes, float32=True) | |
except: | |
raise Exception("gt path {} not working".format(gt_path)) | |
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2RGB) | |
else: | |
try: | |
img_gt = imfrombytes(img_bytes, flag='grayscale', float32=True) | |
except: | |
raise Exception("gt path {} not working".format(gt_path)) | |
img_gt = np.expand_dims(img_gt, axis=2) | |
img_lq = img_gt.copy() | |
# augmentation for training | |
if self.opt['phase'] == 'train': | |
gt_size = self.opt['gt_size'] | |
# padding | |
img_gt, img_lq = padding(img_gt, img_lq, gt_size) | |
# random crop | |
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, | |
gt_path) | |
# flip, rotation | |
if self.geometric_augs: | |
img_gt, img_lq = random_augmentation(img_gt, img_lq) | |
img_gt, img_lq = img2tensor([img_gt, img_lq], | |
bgr2rgb=False, | |
float32=True) | |
if self.sigma_type == 'constant': | |
sigma_value = self.sigma_range | |
elif self.sigma_type == 'random': | |
sigma_value = random.uniform(self.sigma_range[0], self.sigma_range[1]) | |
elif self.sigma_type == 'choice': | |
sigma_value = random.choice(self.sigma_range) | |
noise_level = torch.FloatTensor([sigma_value])/255.0 | |
# noise_level_map = torch.ones((1, img_lq.size(1), img_lq.size(2))).mul_(noise_level).float() | |
noise = torch.randn(img_lq.size()).mul_(noise_level).float() | |
img_lq.add_(noise) | |
else: | |
np.random.seed(seed=0) | |
img_lq += np.random.normal(0, self.sigma_test/255.0, img_lq.shape) | |
# noise_level_map = torch.ones((1, img_lq.shape[0], img_lq.shape[1])).mul_(self.sigma_test/255.0).float() | |
img_gt, img_lq = img2tensor([img_gt, img_lq], | |
bgr2rgb=False, | |
float32=True) | |
return { | |
'lq': img_lq, | |
'gt': img_gt, | |
'lq_path': gt_path, | |
'gt_path': gt_path | |
} | |
def __len__(self): | |
return len(self.paths) | |
class Dataset_DefocusDeblur_DualPixel_16bit(data.Dataset): | |
def __init__(self, opt): | |
super(Dataset_DefocusDeblur_DualPixel_16bit, self).__init__() | |
self.opt = opt | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.mean = opt['mean'] if 'mean' in opt else None | |
self.std = opt['std'] if 'std' in opt else None | |
self.gt_folder, self.lqL_folder, self.lqR_folder = opt['dataroot_gt'], opt['dataroot_lqL'], opt['dataroot_lqR'] | |
if 'filename_tmpl' in opt: | |
self.filename_tmpl = opt['filename_tmpl'] | |
else: | |
self.filename_tmpl = '{}' | |
self.paths = paired_DP_paths_from_folder( | |
[self.lqL_folder, self.lqR_folder, self.gt_folder], ['lqL', 'lqR', 'gt'], | |
self.filename_tmpl) | |
if self.opt['phase'] == 'train': | |
self.geometric_augs = self.opt['geometric_augs'] | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient( | |
self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
scale = self.opt['scale'] | |
index = index % len(self.paths) | |
# Load gt and lq images. Dimension order: HWC; channel order: BGR; | |
# image range: [0, 1], float32. | |
gt_path = self.paths[index]['gt_path'] | |
img_bytes = self.file_client.get(gt_path, 'gt') | |
try: | |
img_gt = imfrombytesDP(img_bytes, float32=True) | |
except: | |
raise Exception("gt path {} not working".format(gt_path)) | |
lqL_path = self.paths[index]['lqL_path'] | |
img_bytes = self.file_client.get(lqL_path, 'lqL') | |
try: | |
img_lqL = imfrombytesDP(img_bytes, float32=True) | |
except: | |
raise Exception("lqL path {} not working".format(lqL_path)) | |
lqR_path = self.paths[index]['lqR_path'] | |
img_bytes = self.file_client.get(lqR_path, 'lqR') | |
try: | |
img_lqR = imfrombytesDP(img_bytes, float32=True) | |
except: | |
raise Exception("lqR path {} not working".format(lqR_path)) | |
# augmentation for training | |
if self.opt['phase'] == 'train': | |
gt_size = self.opt['gt_size'] | |
# padding | |
img_lqL, img_lqR, img_gt = padding_DP(img_lqL, img_lqR, img_gt, gt_size) | |
# random crop | |
img_lqL, img_lqR, img_gt = paired_random_crop_DP(img_lqL, img_lqR, img_gt, gt_size, scale, gt_path) | |
# flip, rotation | |
if self.geometric_augs: | |
img_lqL, img_lqR, img_gt = random_augmentation(img_lqL, img_lqR, img_gt) | |
# TODO: color space transform | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_lqL, img_lqR, img_gt = img2tensor([img_lqL, img_lqR, img_gt], | |
bgr2rgb=True, | |
float32=True) | |
# normalize | |
if self.mean is not None or self.std is not None: | |
normalize(img_lqL, self.mean, self.std, inplace=True) | |
normalize(img_lqR, self.mean, self.std, inplace=True) | |
normalize(img_gt, self.mean, self.std, inplace=True) | |
img_lq = torch.cat([img_lqL, img_lqR], 0) | |
return { | |
'lq': img_lq, | |
'gt': img_gt, | |
'lq_path': lqL_path, | |
'gt_path': gt_path | |
} | |
def __len__(self): | |
return len(self.paths) | |