Spaces:
Sleeping
Sleeping
Delete app/similarity.py
Browse files- app/similarity.py +0 -22
app/similarity.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
|
4 |
-
def cosine_similarity(
|
5 |
-
query_vector: np.ndarray,
|
6 |
-
corpus_vectors: np.ndarray
|
7 |
-
) -> np.ndarray:
|
8 |
-
"""
|
9 |
-
Calculate cosine similarity between a query vector and a corpus of vectors.
|
10 |
-
|
11 |
-
Args:
|
12 |
-
query_vector: Vectorized prompt query of shape (D,).
|
13 |
-
corpus_vectors: Vectorized prompt corpus of shape (N, D).
|
14 |
-
|
15 |
-
Returns:
|
16 |
-
np.ndarray: The vector of shape (N,) with values in range [-1, 1] where 1
|
17 |
-
is max similarity i.e., two vectors are the same.
|
18 |
-
"""
|
19 |
-
dot_product = np.dot(corpus_vectors, query_vector)
|
20 |
-
norm_query = np.linalg.norm(query_vector)
|
21 |
-
norm_corpus = np.linalg.norm(corpus_vectors, axis=1)
|
22 |
-
return dot_product / (norm_query * norm_corpus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|