Spaces:
Sleeping
Sleeping
File size: 4,685 Bytes
cbcf653 29002d7 1da8d89 cbcf653 f8d0caa cbcf653 29002d7 cbcf653 f366e0e 29002d7 cbcf653 f8d0caa 6fafee4 f8d0caa 6fafee4 29002d7 6fafee4 cbcf653 6fafee4 cbcf653 6fafee4 cbcf653 29002d7 cbcf653 29002d7 cbcf653 29002d7 cbcf653 29002d7 f8d0caa 29002d7 f8d0caa cbcf653 29002d7 cbcf653 29002d7 f8d0caa 29002d7 f8d0caa 29002d7 5fd8183 29002d7 1da8d89 f8d0caa 1da8d89 5fd8183 a8b594a 1da8d89 a8b594a 1da8d89 29002d7 cbcf653 29002d7 cbcf653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import streamlit as st
import os
from streamlit_chat import message
from PyPDF2 import PdfReader
import bs4
import google.generativeai as genai
from langchain.prompts import PromptTemplate
from langchain import LLMChain
from langchain_google_genai import ChatGoogleGenerativeAI
import nest_asyncio
from langchain.document_loaders import WebBaseLoader
nest_asyncio.apply()
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
llm = ChatGoogleGenerativeAI(model="gemini-pro",
temperature=0.4)
template = """You are "CRETA," a friendly chatbot developed by Suriya, an AI enthusiast. Your role is to engage in clear and informative conversations with users, providing helpful responses based on the information extracted from URLs, documents, and previous chat interactions.
Extracted URL text:
{extracted_text}
Provided document:
{provided_docs}
Chat history:
{chat_history}
Human: {human_input}
Chatbot: Sure, I can help with that! [Your response here, followed by a friendly follow-up question or comment to continue the conversation.]
"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input", "provided_docs"], template=template
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
)
previous_response = ""
provided_docs = ""
def conversational_chat(query):
global previous_response, provided_docs
for i in st.session_state['history']:
if i is not None:
previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}"
docs = ""
for j in st.session_state["docs"]:
if j is not None:
docs += j
ex_text = st.session_state["extracted_text"]
provided_docs = docs
result = llm_chain.predict(chat_history=previous_response, human_input=query, provided_docs=provided_docs,extracted_text=ex_text)
st.session_state['history'].append((query, result))
return result
st.title("Chat Bot:")
st.text("I am CRETA Your Friendly Assitant")
if 'history' not in st.session_state:
st.session_state['history'] = []
# Initialize messages
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello ! Ask me anything"]
if 'past' not in st.session_state:
st.session_state['past'] = [" "]
if 'docs' not in st.session_state:
st.session_state['docs'] = []
if "extracted_text" not in st.session_state:
st.session_state["extracted_text"] = ""
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_url_text(url_link):
website_url = url_link
loader = WebBaseLoader(website_url)
loader.requests_per_second = 1
docs = loader.aload()
extracted_text = ""
for page in docs:
extracted_text+=page.page_content
return extracted_text
with st.sidebar:
st.title("Add a file for CRETA memory:")
uploaded_files = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
uploaded_url = st.text_area("Please upload a URL:")
if st.button("Submit & Process"):
if uploaded_files or uploaded_url:
with st.spinner("Processing..."):
if uploaded_files:
pdf_text = get_pdf_text(uploaded_files)
st.session_state["docs"] += get_pdf_text(uploaded_files)
if uploaded_url:
url_text = get_url_text(uploaded_url)
st.session_state["extracted_text"] += get_url_text(uploaded_url)
st.success("Processing complete!")
else:
st.error("Please upload at least one PDF file or provide a URL.")
# Create containers for chat history and user input
response_container = st.container()
container = st.container()
# User input form
user_input = st.chat_input("Ask Your Questions 👉..")
with container:
if user_input:
output = conversational_chat(user_input)
# answer = response_generator(output)
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
# Display chat history
if st.session_state['generated']:
with response_container:
for i in range(len(st.session_state['generated'])):
if i != 0:
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer")
message(st.session_state["generated"][i], key=str(i), avatar_style="bottts") |