Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFacePipeline, HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from pathlib import Path | |
import chromadb | |
import re | |
def load_doc(list_file_path, chunk_size=600, chunk_overlap=40): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [page for loader in loaders for page in loader.load()] | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
client = chromadb.EphemeralClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=client, | |
collection_name=collection_name, | |
) | |
return vectordb | |
def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()): | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=0.7, | |
max_new_tokens=1024, | |
top_k=3, | |
) | |
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
return qa_chain | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50] | |
if len(collection_name) < 3: | |
collection_name += 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
return collection_name | |
def initialize_database(list_file_obj, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
collection_name = create_collection_name(list_file_path[0]) | |
doc_splits = load_doc(list_file_path) | |
vector_db = create_db(doc_splits, collection_name) | |
return vector_db, collection_name, "Complete!" | |
def initialize_LLM(llm_model, vector_db, progress=gr.Progress()): | |
qa_chain = initialize_llmchain(llm_model, vector_db, progress) | |
return qa_chain, "Complete!" | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = [(f"User: {user_message}", f"Assistant: {bot_message}") for user_message, bot_message in history] | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if "Helpful Answer:" in response_answer: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
collection_name = gr.State() | |
gr.Markdown( | |
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2> | |
<h3>Ask any questions about your PDF documents, along with follow-ups</h3> | |
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. | |
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes. | |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br> | |
""") | |
with gr.Tab("Step 1 - Document pre-processing"): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") | |
with gr.Row(): | |
db_progress = gr.Textbox(label="Vector database initialization", value="None") | |
with gr.Row(): | |
db_btn = gr.Button("Generate vector database...") | |
with gr.Tab("Step 2 - QA chain initialization"): | |
llm_btn = gr.Radio(["mistralai/Mistral-7B-Instruct-v0.2"], label="LLM models", value="mistralai/Mistral-7B-Instruct-v0.2", type="index", info="Choose your LLM model") | |
with gr.Row(): | |
llm_progress = gr.Textbox(value="None", label="QA chain initialization") | |
with gr.Row(): | |
qachain_btn = gr.Button("Initialize question-answering chain...") | |
with gr.Tab("Step 3 - Conversation with chatbot"): | |
chatbot = gr.Chatbot(height=300) | |
with gr.Row(): | |
msg = gr.Textbox(placeholder="Type message", container=True) | |
with gr.Row(): | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.ClearButton([msg, chatbot]) | |
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, collection_name, db_progress]) | |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False) | |
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False) | |
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False) | |
clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() |