Spaces:
Running
A newer version of the Gradio SDK is available:
5.23.3
Astra Project Setup Instructions
Prerequisites
Make sure you have the following installed before proceeding:
- Python 3.12.4
- Git
- Git Large File Storage (LFS)
Step 1: Install Git LFS
Git LFS (Large File Storage) is required for managing large files in the Astra project. Follow these steps to install Git LFS:
Windows
- Download the Git LFS installer from Git LFS Releases.
- Run the installer and follow the setup instructions.
- Open a terminal (Command Prompt or PowerShell) and run:
git lfs install
macOS
- Install Git LFS using Homebrew:
brew install git-lfs
- Initialize Git LFS:
git lfs install
Linux
- Install Git LFS using your package manager:
- Debian/Ubuntu:
sudo apt install git-lfs
- Fedora:
sudo dnf install git-lfs
- Arch Linux:
sudo pacman -S git-lfs
- Debian/Ubuntu:
- Initialize Git LFS:
git lfs install
Step 2: Install Python (Alternative: pyenv)
While Python 3.12.4 is required, it is recommended to use pyenv
if you want to work with multiple Python versions or if you encounter errors while installing dependencies.
Installing pyenv
macOS & Linux:
curl https://pyenv.run | bash
After installation, restart your terminal and install Python:
pyenv install 3.12.4
pyenv global 3.12.4
Windows:
Use pyenv-win:
git clone https://github.com/pyenv-win/pyenv-win.git ~/.pyenv
setx PYENV "%USERPROFILE%\.pyenv"
setx PATH "%PYENV%\bin;%PYENV%\shims;%PATH%"
pyenv install 3.12.4
pyenv global 3.12.4
Step 3: Clone the Repository
Clone the Astra project repository using Git:
git clone <repository_url>
cd astra
Step 4: Install Dependencies
Install all required dependencies from the requirements.txt
file:
pip install -r requirements.txt
Step 5: Verify Installation
Ensure all dependencies are installed correctly by running:
python --version
pip list
Step 6: Run the Application or Test the Model
You have two options to proceed:
Option 1: Run the Gradio App
To open the Gradio app in your web browser and interact with the application, run:
python app.py
Option 2: Test the Model with a Sample File
To test the fine-tuned model using a sample file, navigate to the root folder of the project and run the following command:
cd <root_folder>
python new_test_saved_finetuned_model.py \
-workspace_name "ratio_proportion_change3_2223/sch_largest_100-coded" \
-finetune_task "<finetune_task>" \
-test_dataset_path "../../../../fileHandler/selected_rows.txt" \
-finetuned_bert_classifier_checkpoint "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42" \
-e 1 \
-b 1000
Replace <finetune_task>
with the actual fine-tuning task value.
Your Astra project should now be fully set up and ready to use!