logmetric / logmetric.py
svenwey's picture
add new metric timestamp_delta
a50fad5
raw
history blame
14.8 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import re
import dateutil.parser
import numpy as np
from difflib import SequenceMatcher
import sacrebleu
import time
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class LogMetric(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
# Constant regex to get timestrings
timestamp_regex = r'^\s*\[?\s*(\d{4}[-/.]\d{2}[-/.]\d{2}(?:[ T]\d{2}[:]\d{2}(?:[:]\d{2}(?:[.,]\d+)?)?(?:Z|[+-]\d{2}[:]\d{2})?)?)\s*\]?\s*'
timestamp_pattern = re.compile(timestamp_regex, re.MULTILINE)
int_regex = r'(-?\d+)'
int_pattern = re.compile(int_regex)
float_regex = r'(-?\d+\.\d+)'
float_pattern = re.compile(float_regex)
sacrebleu_metric = evaluate.load("evaluate-metric/sacrebleu")
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
# Both prediction and reference are strings
features=datasets.Features({
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
# Jaccard Similarity to measure closeness of two log-messages
def get_jaccard_similarity(self, set1, set2):
intersection = set1.intersection(set2)
union = set1.union(set2)
if (len(union) == 0):
return 1.0
return len(intersection) / len(union)
# A score depending on the difference in length of two sentences
def get_length_score(self, preds_split, refs_split):
pred_content_lengths = np.vectorize(len)(preds_split)
ref_content_lengths = np.vectorize(len)(refs_split)
return self.smapeScore(pred_content_lengths, ref_content_lengths)
# helper function that computes the smape_score either between two numbers or two lists of numbers (must be the same length)
def smapeScore(self, P, R):
P_isnumber = isinstance(P, (int, float))
R_isnumber = isinstance(R, (int, float))
# either both must be numbers or both must be no number
assert P_isnumber == R_isnumber
if not P_isnumber:
assert(len(P) == len(R))
if P_isnumber and R_isnumber:
if P == 0 and R == 0: return 1.0 # since this leads to (|R| + |P|) = 0
return 1 - (np.sum(np.abs(R - P) / (np.abs(R) + np.abs(P)))) # (n = 1)
else:
if len(P) == 0 and len(R) == 0: return 1.0 # since this leads to n = 0
n = len(P)
P = np.array(P)
R = np.array(R)
denominator = np.abs(R) + np.abs(P)
# Replace zeros in the denominator with 1 to avoid division by zero.
# the denominator[i] = 0 is only possible if R[i] == P[i] == 0, hence we can set denominator[i] = 1 and still achieve the result of 0 after division at index i
denominator[denominator == 0] = 1
return 1 - (1.0/n * np.sum(np.abs(R - P) / denominator))
# splits both strings at \n and then computes the smape_score of their lengths
def getLineCountScore(self, pred, ref):
pred_lines_amt = len(pred.splitlines())
ref_lines_amt = len(ref.splitlines())
# print("#pred_lines:", pred_lines_amt)
# print("#ref_lines:", ref_lines_amt)
return self.smapeScore(pred_lines_amt, ref_lines_amt)
def replaceNumbers(self, text:str):
text = self.int_pattern.sub(r'<|INT|>', text)
text = self.float_pattern.sub(r'<|FLOAT|>', text)
return text
# Get differenct scores regarding the content of a log-message
def getLineContentScore(self, pred_logMessages, ref_logMessages):
if pred_logMessages == [] and ref_logMessages == []:
pred_logMessages = [""]
ref_logMessages = [""]
sacrebleu_score = self.sacrebleu_metric.compute(predictions=pred_logMessages, references=ref_logMessages)["score"] / 100.0
smape_length_score = self.get_length_score(pred_logMessages, ref_logMessages)
vectorized_replaceNumbers = np.vectorize(self.replaceNumbers)
cleaned_pred_logMessages = vectorized_replaceNumbers(pred_logMessages)
cleaned_ref_logMessages = vectorized_replaceNumbers(ref_logMessages)
sacrebleu_withoutExplicitNumbers_score = self.sacrebleu_metric.compute(predictions=cleaned_pred_logMessages, references=cleaned_ref_logMessages)["score"] / 100.0
return sacrebleu_score, sacrebleu_withoutExplicitNumbers_score, smape_length_score
# get different scores regarding the timestamp
def getTimestampsScore(self, pred_timestamps, ref_timestamps):
timestamp_amt_score = self.smapeScore(len(pred_timestamps), len(ref_timestamps))
if (len(pred_timestamps) == 0) and (len(ref_timestamps) == 0):
return timestamp_amt_score, 1.0, 1.0, 1.0
# if there are no predicted timestamps, return early. It is still consistent and monotonic.
if (len(pred_timestamps) == 0) and (len(ref_timestamps) != 0):
return timestamp_amt_score, 1.0, 1.0, 0.0
# replace all digits in the reference timestamp (first timestamp) with '/d' to get
# a regex that describes the format
pred_timestring_pattern = re.sub(r'\d', r'\\d', re.escape(pred_timestamps[0]))
matchesPatternScore = 1.0
monotonicallyIncreasingScore = 1.0
pred_timedeltas = []
# A variable to save the previous timestamp (as datetime obj) to check monotonicity
prev_datetime = None
# Convert matches to datetime objects
for i in range(len(pred_timestamps)):
ts = pred_timestamps[i]
try:
# Check if the format matches with the format of the first timestamp
# TODO!! Check this later, maybe it is too restricting for training a llm
matchesPattern = re.fullmatch(pred_timestring_pattern, ts) is not None
# Check if the timestamps are monotonically increasing
cur_datetime = dateutil.parser.parse(ts)
if prev_datetime == None:
monotonicallyIncreasing = True
else:
monotonicallyIncreasing = prev_datetime <= cur_datetime
pred_timedeltas.append((cur_datetime - prev_datetime).total_seconds())
prev_datetime = cur_datetime
# If one entry doesn't fulfill the matching pattern property or the monotinicity property, set to 0 for whole log
matchesPatternScore = 0.0 if (not matchesPattern) else matchesPatternScore
monotonicallyIncreasingScore = 0.0 if (not monotonicallyIncreasing) else monotonicallyIncreasingScore
except Exception as e:
# e.g. date format not parsable by dateutil.parser
matchesPatternScore = 0.0
monotonicallyIncreasingScore = 0.0
pred_timedeltas.append(-1)
if (len(pred_timestamps) != 0) and (len(ref_timestamps) == 0):
return timestamp_amt_score, matchesPatternScore, monotonicallyIncreasingScore, 0.0
ref_timedeltas = []
prev_datetime = None
for i in range(len(ref_timestamps)):
ts = ref_timestamps[i]
try:
cur_datetime = dateutil.parser.parse(ts)
if prev_datetime == None:
pass
else:
ref_timedeltas.append((cur_datetime - prev_datetime).total_seconds())
prev_datetime = cur_datetime
except Exception as e:
ref_timedeltas.append(-1)
minlength = min(len(pred_timedeltas), len(ref_timedeltas))
pred_timedeltas = pred_timedeltas[:minlength]
ref_timedeltas = ref_timedeltas[:minlength]
print("pred_timedeltas:", pred_timedeltas)
print("ref_timedeltas:", ref_timedeltas)
timestampDeltaScore = self.smapeScore(pred_timedeltas, ref_timedeltas)
print("timestampDeltaScore:", timestampDeltaScore)
# matchesPatternScore and monotonicallyIncreasingScore are in {0,1}
return timestamp_amt_score, matchesPatternScore, monotonicallyIncreasingScore, timestampDeltaScore
def getLogMetric(self, pred : str, ref : str):
ref = ref.strip(' \t\n\r')
pred = pred.strip(' \t\n\r')
linecount_difference_SMAPE = self.getLineCountScore(pred, ref)
# Split log on timestamps
pred_split_log = self.timestamp_pattern.split(pred)
ref_split_log = self.timestamp_pattern.split(ref)
# One logentry always consists of timestamp + log-message
# pred_logentries = []
# ref_logentries = []
pred_timestamps = []
pred_logMessages = []
ref_timestamps = []
ref_logMessages = []
# reorganize log into logentry-tuples, consisting of timestamp + log-message
for i in range(1, len(pred_split_log), 2):
# pred_logentries.append((pred_split_log[i],pred_split_log[i+1]))
pred_timestamps.append(pred_split_log[i])
pred_logMessages.append(pred_split_log[i+1])
for i in range(1, len(ref_split_log), 2):
# ref_logentries.append((ref_split_log[i],ref_split_log[i+1]))
ref_timestamps.append(ref_split_log[i])
ref_logMessages.append(ref_split_log[i+1])
# We extend the shorter list to the length of the longer one
max_logentries = max(len(pred_logMessages), len(ref_logMessages))
pred_logMessages += (max_logentries - len(pred_logMessages)) * [" "]
ref_logMessages += (max_logentries- len(ref_logMessages)) * [" "]
linecontent_sacrebleu, linecontent_sacrebleu_withoutExplicitNumbers, linecontentlength_difference_SMAPE = self.getLineContentScore(pred_logMessages, ref_logMessages)
timestamps_difference_SMAPE, timestamps_formatConsistency_absolute, timestamps_monotinicity_absolute, timestamps_delta_SMAPE = self.getTimestampsScore(pred_timestamps, ref_timestamps)
# return weighted overall score of all the different scores
return {"linecount_difference_SMAPE_score": linecount_difference_SMAPE,
"linecontentlength_difference_SMAPE_score": linecontentlength_difference_SMAPE,
"linecontent_sacrebleu_score": linecontent_sacrebleu,
"linecontent_sacrebleu_withoutExplicitNumbers_score": linecontent_sacrebleu_withoutExplicitNumbers,
"timestamps_SMAPE_difference_score": timestamps_difference_SMAPE,
"timestamps_formatConsistency_score": timestamps_formatConsistency_absolute,
"timestamps_monotinicity_score": timestamps_monotinicity_absolute,
"timestamps_delta_SMAPE_score" : timestamps_delta_SMAPE
}
def _compute(self, predictions, references):
"""Returns the scores"""
# TODO: get separate log entries (split before timestamps), replace timestamps with token and compare the log entry with BLEU
t_before_logmetric = time.perf_counter()
metric_dicts = [self.getLogMetric(p,r) for p,r in zip(predictions,references)]
# Extract keys (assuming all dictionaries have the same keys)
keys = metric_dicts[0].keys()
# Convert list of dictionaries into a 2D numpy array
values = np.array([list(d.values()) for d in metric_dicts])
# Calculate the mean along the vertical axis (axis=0)
mean_values = np.mean(values, axis=0)
# a dictionary, matching the keys with their corresponding mean values
metric_result = dict(zip(keys, mean_values))
t_after_logmetric = time.perf_counter()
logmetric_duration = f"{t_after_logmetric - t_before_logmetric:0.10f}"
return metric_result