File size: 14,557 Bytes
92c3d7f 6391fa9 92c3d7f 122eb28 92c3d7f 84ade0a 33976bc 92c3d7f 6391fa9 92c3d7f 122eb28 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 122eb28 92c3d7f 6391fa9 92c3d7f fde6683 92c3d7f 122eb28 92c3d7f ef1de2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import argparse
import os
import shutil
import cv2
import gradio as gr
import numpy as np
import torch
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
import huggingface_hub
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img
from tools import BEN2
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=8080)
args = parser.parse_args()
huggingface_hub.login(os.getenv('HF_TOKEN'))
# try:
# shutil.rmtree('gradio_cached_examples')
# except FileNotFoundError:
# print("cache folder not exist")
class Generator:
def __init__(self):
device = torch.device('cuda')
# preprocessing models
# background remove model: BEN2
self.bg_rm_model = BEN2.BEN_Base().to(device).eval()
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
# face crop and align tool: facexlib
self.face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
# load dreamo
model_root = 'black-forest-labs/FLUX.1-dev'
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
dreamo_pipeline.load_dreamo_model(device, use_turbo=True)
self.dreamo_pipeline = dreamo_pipeline.to(device)
@torch.no_grad()
def get_align_face(self, img):
# the face preprocessing code is same as PuLID
self.face_helper.clean_all()
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
self.face_helper.read_image(image_bgr)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0:
return None
align_face = self.face_helper.cropped_faces[0]
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input = input.to(torch.device("cuda"))
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input)
# only keep the face features
face_features_image = torch.where(bg, white_image, input)
face_features_image = tensor2img(face_features_image, rgb2bgr=False)
return face_features_image
generator = Generator()
@spaces.GPU
@torch.inference_mode()
def generate_image(
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width=1024,
height=1024,
ref_res=512,
num_steps=12,
guidance=3.5,
true_cfg=1,
cfg_start_step=0,
cfg_end_step=0,
neg_prompt='',
neg_guidance=3.5,
first_step_guidance=0,
):
print(prompt)
ref_conds = []
debug_images = []
ref_images = [ref_image1, ref_image2]
ref_tasks = [ref_task1, ref_task2]
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
if ref_image is not None:
if ref_task == "id":
ref_image = generator.get_align_face(ref_image)
elif ref_task != "style":
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
debug_images.append(ref_image)
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
ref_image = 2 * ref_image - 1.0
ref_conds.append(
{
'img': ref_image,
'task': ref_task,
'idx': idx + 1,
}
)
seed = int(seed)
if seed == -1:
seed = torch.Generator(device="cpu").seed()
image = generator.dreamo_pipeline(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_steps,
guidance_scale=guidance,
ref_conds=ref_conds,
generator=torch.Generator(device="cpu").manual_seed(seed),
true_cfg_scale=true_cfg,
true_cfg_start_step=cfg_start_step,
true_cfg_end_step=cfg_end_step,
negative_prompt=neg_prompt,
neg_guidance_scale=neg_guidance,
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance,
).images[0]
return image, debug_images, seed
_HEADER_ = '''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">DreamO</h1>
<p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2504.16915' target='_blank'>DreamO: A Unified Framework for Image Customization</a> | Codes: <a href='https://github.com/bytedance/DreamO' target='_blank'>GitHub</a></p>
</div>
❗️❗️❗️**User Guide:**
- The most important thing to do first is to try the examples provided below the demo, which will help you better understand the capabilities of the DreamO model and the types of tasks it currently supports
- For each input, please select the appropriate task type. For general objects, characters, or clothing, choose IP — we will remove the background from the input image. If you select ID, we will extract the face region from the input image (similar to PuLID). If you select Style, the background will be preserved, and you must prepend the prompt with the instruction: 'generate a same style image.' to activate the style task.
- To accelerate inference, we adopt FLUX-turbo LoRA, which reduces the sampling steps from 25 to 12 compared to FLUX-dev. Additionally, we distill a CFG LoRA, achieving nearly a twofold reduction in steps by eliminating the need for true CFG
''' # noqa E501
_CITE_ = r"""
If DreamO is helpful, please help to ⭐ the <a href='https://github.com/bytedance/DreamO' target='_blank'> Github Repo</a>. Thanks!
---
📧 **Contact**
If you have any questions or feedbacks, feel free to open a discussion or contact <b>[email protected]</b> and <b>[email protected]</b>
""" # noqa E501
def create_demo():
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
with gr.Row():
ref_image1 = gr.Image(label="ref image 1", type="numpy", height=256)
ref_image2 = gr.Image(label="ref image 2", type="numpy", height=256)
with gr.Row():
ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 1")
ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 2")
prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street")
width = gr.Slider(768, 1024, 1024, step=16, label="Width")
height = gr.Slider(768, 1024, 1024, step=16, label="Height")
num_steps = gr.Slider(8, 30, 12, step=1, label="Number of steps")
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance")
seed = gr.Textbox(label="Seed (-1 for random)", value="-1")
with gr.Accordion("Advanced Options", open=False, visible=False):
ref_res = gr.Slider(512, 1024, 512, step=16, label="resolution for ref image")
neg_prompt = gr.Textbox(label="Neg Prompt", value="")
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Neg Guidance")
true_cfg = gr.Slider(1, 5, 1, step=0.1, label="true cfg")
cfg_start_step = gr.Slider(0, 30, 0, step=1, label="cfg start step")
cfg_end_step = gr.Slider(0, 30, 0, step=1, label="cfg end step")
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="first step guidance")
generate_btn = gr.Button("Generate")
gr.Markdown(_CITE_)
with gr.Column():
output_image = gr.Image(label="Generated Image", format='png')
debug_image = gr.Gallery(
label="Preprocessing output (including possible face crop and background remove)",
elem_id="gallery",
)
seed_output = gr.Textbox(label="Used Seed")
with gr.Row(), gr.Column():
gr.Markdown("## Examples")
example_inps = [
[
'example_inputs/woman1.png',
None,
'ip',
'ip',
'profile shot dark photo of a 25-year-old female with smoke escaping from her mouth, the backlit smoke gives the image an ephemeral quality, natural face, natural eyebrows, natural skin texture, award winning photo, highly detailed face, atmospheric lighting, film grain, monochrome', # noqa E501
9180879731249039735,
],
[
'example_inputs/man1.png',
None,
'ip',
'ip',
'a man sitting on the cloud, playing guitar',
1206523688721442817,
],
[
'example_inputs/toy1.png',
None,
'ip',
'ip',
'a purple toy holding a sign saying "DreamO", on the mountain',
1563188099017016129,
],
[
'example_inputs/perfume.png',
None,
'ip',
'ip',
'a perfume under spotlight',
116150031980664704,
],
[
'example_inputs/hinton.jpeg',
None,
'id',
'ip',
'portrait, Chibi',
5443415087540486371,
],
[
'example_inputs/mickey.png',
None,
'style',
'ip',
'generate a same style image. A rooster wearing overalls.',
6245580464677124951,
],
[
'example_inputs/mountain.png',
None,
'style',
'ip',
'generate a same style image. A pavilion by the river, and the distant mountains are endless',
5248066378927500767,
],
[
'example_inputs/shirt.png',
'example_inputs/skirt.jpeg',
'ip',
'ip',
'A girl is wearing a short-sleeved shirt and a short skirt on the beach.',
9514069256241143615,
],
[
'example_inputs/woman2.png',
'example_inputs/dress.png',
'id',
'ip',
'the woman wearing a dress, In the banquet hall',
7698454872441022867,
],
[
'example_inputs/dog1.png',
'example_inputs/dog2.png',
'ip',
'ip',
'two dogs in the jungle',
6187006025405083344,
],
[
'example_inputs/woman3.png',
'example_inputs/cat.png',
'ip',
'ip',
'A girl rides a giant cat, walking in the noisy modern city. High definition, realistic, non-cartoonish. Excellent photography work, 8k high definition.', # noqa E501
11980469406460273604,
],
[
'example_inputs/man2.jpeg',
'example_inputs/woman4.jpeg',
'ip',
'ip',
'a man is dancing with a woman in the room',
8303780338601106219,
],
]
gr.Examples(
examples=example_inps,
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed],
label='row 1-4: IP task; row 5: ID task; row 6-7: Style task. row 8-9: Try-On task; row 10-12: Multi IP',
cache_examples='lazy',
outputs=[output_image, debug_image, seed_output],
fn=generate_image,
)
generate_btn.click(
fn=generate_image,
inputs=[
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width,
height,
ref_res,
num_steps,
guidance,
true_cfg,
cfg_start_step,
cfg_end_step,
neg_prompt,
neg_guidance,
first_step_guidance,
],
outputs=[output_image, debug_image, seed_output],
)
return demo
if __name__ == '__main__':
demo = create_demo()
demo.launch(share = True)
|