File size: 8,478 Bytes
92c3d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import re

import cv2
import numpy as np
import torch
from torchvision.utils import make_grid


# from basicsr
def img2tensor(imgs, bgr2rgb=True, float32=True):
    """Numpy array to tensor.

    Args:
        imgs (list[ndarray] | ndarray): Input images.
        bgr2rgb (bool): Whether to change bgr to rgb.
        float32 (bool): Whether to change to float32.

    Returns:
        list[tensor] | tensor: Tensor images. If returned results only have
            one element, just return tensor.
    """

    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            if img.dtype == 'float64':
                img = img.astype('float32')
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = torch.from_numpy(img.transpose(2, 0, 1))
        if float32:
            img = img.float()
        return img

    if isinstance(imgs, list):
        return [_totensor(img, bgr2rgb, float32) for img in imgs]
    return _totensor(imgs, bgr2rgb, float32)


def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
    """Convert torch Tensors into image numpy arrays.

    After clamping to [min, max], values will be normalized to [0, 1].

    Args:
        tensor (Tensor or list[Tensor]): Accept shapes:
            1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
            2) 3D Tensor of shape (3/1 x H x W);
            3) 2D Tensor of shape (H x W).
            Tensor channel should be in RGB order.
        rgb2bgr (bool): Whether to change rgb to bgr.
        out_type (numpy type): output types. If ``np.uint8``, transform outputs
            to uint8 type with range [0, 255]; otherwise, float type with
            range [0, 1]. Default: ``np.uint8``.
        min_max (tuple[int]): min and max values for clamp.

    Returns:
        (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
        shape (H x W). The channel order is BGR.
    """
    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')

    if torch.is_tensor(tensor):
        tensor = [tensor]
    result = []
    for _tensor in tensor:
        _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
        _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])

        n_dim = _tensor.dim()
        if n_dim == 4:
            img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
            img_np = img_np.transpose(1, 2, 0)
            if rgb2bgr:
                img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 3:
            img_np = _tensor.numpy()
            img_np = img_np.transpose(1, 2, 0)
            if img_np.shape[2] == 1:  # gray image
                img_np = np.squeeze(img_np, axis=2)
            else:
                if rgb2bgr:
                    img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 2:
            img_np = _tensor.numpy()
        else:
            raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
        if out_type == np.uint8:
            # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
            img_np = (img_np * 255.0).round()
        img_np = img_np.astype(out_type)
        result.append(img_np)
    if len(result) == 1:
        result = result[0]
    return result


def resize_numpy_image_area(image, area=512 * 512):
    h, w = image.shape[:2]
    k = math.sqrt(area / (h * w))
    h = int(h * k) - (int(h * k) % 16)
    w = int(w * k) - (int(w * k) % 16)
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
    return image


# reference: https://github.com/huggingface/diffusers/pull/9295/files
def convert_flux_lora_to_diffusers(old_state_dict):
    new_state_dict = {}
    orig_keys = list(old_state_dict.keys())

    def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
        down_weight = sds_sd.pop(sds_key)
        up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))

        # calculate dims if not provided
        num_splits = len(ait_keys)
        if dims is None:
            dims = [up_weight.shape[0] // num_splits] * num_splits
        else:
            assert sum(dims) == up_weight.shape[0]

        # make ai-toolkit weight
        ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
        ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]

        # down_weight is copied to each split
        ait_sd.update({k: down_weight for k in ait_down_keys})

        # up_weight is split to each split
        ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))})  # noqa: C416

    for old_key in orig_keys:
        # Handle double_blocks
        if 'double_blocks' in old_key:
            block_num = re.search(r"double_blocks_(\d+)", old_key).group(1)
            new_key = f"transformer.transformer_blocks.{block_num}"

            if "proj_lora1" in old_key:
                new_key += ".attn.to_out.0"
            elif "proj_lora2" in old_key:
                new_key += ".attn.to_add_out"
            elif "qkv_lora2" in old_key and "up" not in old_key:
                handle_qkv(
                    old_state_dict,
                    new_state_dict,
                    old_key,
                    [
                        f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
                        f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
                        f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
                    ],
                )
                # continue
            elif "qkv_lora1" in old_key and "up" not in old_key:
                handle_qkv(
                    old_state_dict,
                    new_state_dict,
                    old_key,
                    [
                        f"transformer.transformer_blocks.{block_num}.attn.to_q",
                        f"transformer.transformer_blocks.{block_num}.attn.to_k",
                        f"transformer.transformer_blocks.{block_num}.attn.to_v",
                    ],
                )
                # continue

            if "down" in old_key:
                new_key += ".lora_A.weight"
            elif "up" in old_key:
                new_key += ".lora_B.weight"

        # Handle single_blocks
        elif 'single_blocks' in old_key:
            block_num = re.search(r"single_blocks_(\d+)", old_key).group(1)
            new_key = f"transformer.single_transformer_blocks.{block_num}"

            if "proj_lora" in old_key:
                new_key += ".proj_out"
            elif "qkv_lora" in old_key and "up" not in old_key:
                handle_qkv(
                    old_state_dict,
                    new_state_dict,
                    old_key,
                    [
                        f"transformer.single_transformer_blocks.{block_num}.attn.to_q",
                        f"transformer.single_transformer_blocks.{block_num}.attn.to_k",
                        f"transformer.single_transformer_blocks.{block_num}.attn.to_v",
                    ],
                )

            if "down" in old_key:
                new_key += ".lora_A.weight"
            elif "up" in old_key:
                new_key += ".lora_B.weight"

        else:
            # Handle other potential key patterns here
            new_key = old_key

        # Since we already handle qkv above.
        if "qkv" not in old_key and 'embedding' not in old_key:
            new_state_dict[new_key] = old_state_dict.pop(old_key)

    # if len(old_state_dict) > 0:
    #     raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")

    return new_state_dict