|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import spaces |
|
import argparse |
|
|
|
import os |
|
import shutil |
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
import huggingface_hub |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
from torchvision.transforms.functional import normalize |
|
|
|
from dreamo.dreamo_pipeline import DreamOPipeline |
|
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img |
|
from tools import BEN2 |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--port', type=int, default=8080) |
|
args = parser.parse_args() |
|
|
|
huggingface_hub.login(os.getenv('HF_TOKEN')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Generator: |
|
def __init__(self): |
|
device = torch.device('cuda') |
|
|
|
|
|
self.bg_rm_model = BEN2.BEN_Base().to(device).eval() |
|
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models') |
|
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth') |
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale_factor=1, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
device=device, |
|
) |
|
|
|
|
|
model_root = 'black-forest-labs/FLUX.1-dev' |
|
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16) |
|
dreamo_pipeline.load_dreamo_model(device, use_turbo=True) |
|
self.dreamo_pipeline = dreamo_pipeline.to(device) |
|
|
|
@torch.no_grad() |
|
def get_align_face(self, img): |
|
|
|
self.face_helper.clean_all() |
|
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) |
|
self.face_helper.read_image(image_bgr) |
|
self.face_helper.get_face_landmarks_5(only_center_face=True) |
|
self.face_helper.align_warp_face() |
|
if len(self.face_helper.cropped_faces) == 0: |
|
return None |
|
align_face = self.face_helper.cropped_faces[0] |
|
|
|
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 |
|
input = input.to(torch.device("cuda")) |
|
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] |
|
parsing_out = parsing_out.argmax(dim=1, keepdim=True) |
|
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] |
|
bg = sum(parsing_out == i for i in bg_label).bool() |
|
white_image = torch.ones_like(input) |
|
|
|
face_features_image = torch.where(bg, white_image, input) |
|
face_features_image = tensor2img(face_features_image, rgb2bgr=False) |
|
|
|
return face_features_image |
|
|
|
|
|
generator = Generator() |
|
|
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def generate_image( |
|
ref_image1, |
|
ref_image2, |
|
ref_task1, |
|
ref_task2, |
|
prompt, |
|
seed, |
|
width=1024, |
|
height=1024, |
|
ref_res=512, |
|
num_steps=12, |
|
guidance=3.5, |
|
true_cfg=1, |
|
cfg_start_step=0, |
|
cfg_end_step=0, |
|
neg_prompt='', |
|
neg_guidance=3.5, |
|
first_step_guidance=0, |
|
): |
|
print(prompt) |
|
ref_conds = [] |
|
debug_images = [] |
|
|
|
ref_images = [ref_image1, ref_image2] |
|
ref_tasks = [ref_task1, ref_task2] |
|
|
|
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)): |
|
if ref_image is not None: |
|
if ref_task == "id": |
|
ref_image = generator.get_align_face(ref_image) |
|
elif ref_task != "style": |
|
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image)) |
|
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res) |
|
debug_images.append(ref_image) |
|
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0 |
|
ref_image = 2 * ref_image - 1.0 |
|
ref_conds.append( |
|
{ |
|
'img': ref_image, |
|
'task': ref_task, |
|
'idx': idx + 1, |
|
} |
|
) |
|
|
|
seed = int(seed) |
|
if seed == -1: |
|
seed = torch.Generator(device="cpu").seed() |
|
|
|
image = generator.dreamo_pipeline( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=num_steps, |
|
guidance_scale=guidance, |
|
ref_conds=ref_conds, |
|
generator=torch.Generator(device="cpu").manual_seed(seed), |
|
true_cfg_scale=true_cfg, |
|
true_cfg_start_step=cfg_start_step, |
|
true_cfg_end_step=cfg_end_step, |
|
negative_prompt=neg_prompt, |
|
neg_guidance_scale=neg_guidance, |
|
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance, |
|
).images[0] |
|
|
|
return image, debug_images, seed |
|
|
|
|
|
_HEADER_ = ''' |
|
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> |
|
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">DreamO</h1> |
|
<p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2504.16915' target='_blank'>DreamO: A Unified Framework for Image Customization</a> | Codes: <a href='https://github.com/bytedance/DreamO' target='_blank'>GitHub</a></p> |
|
</div> |
|
|
|
❗️❗️❗️**User Guide:** |
|
- The most important thing to do first is to try the examples provided below the demo, which will help you better understand the capabilities of the DreamO model and the types of tasks it currently supports |
|
- For each input, please select the appropriate task type. For general objects, characters, or clothing, choose IP — we will remove the background from the input image. If you select ID, we will extract the face region from the input image (similar to PuLID). If you select Style, the background will be preserved, and you must prepend the prompt with the instruction: 'generate a same style image.' to activate the style task. |
|
- To accelerate inference, we adopt FLUX-turbo LoRA, which reduces the sampling steps from 25 to 12 compared to FLUX-dev. Additionally, we distill a CFG LoRA, achieving nearly a twofold reduction in steps by eliminating the need for true CFG |
|
|
|
''' |
|
|
|
_CITE_ = r""" |
|
If DreamO is helpful, please help to ⭐ the <a href='https://github.com/bytedance/DreamO' target='_blank'> Github Repo</a>. Thanks! |
|
--- |
|
|
|
📧 **Contact** |
|
If you have any questions or feedbacks, feel free to open a discussion or contact <b>[email protected]</b> and <b>[email protected]</b> |
|
""" |
|
|
|
|
|
def create_demo(): |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(_HEADER_) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
ref_image1 = gr.Image(label="ref image 1", type="numpy", height=256) |
|
ref_image2 = gr.Image(label="ref image 2", type="numpy", height=256) |
|
with gr.Row(): |
|
ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 1") |
|
ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 2") |
|
prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street") |
|
width = gr.Slider(768, 1024, 1024, step=16, label="Width") |
|
height = gr.Slider(768, 1024, 1024, step=16, label="Height") |
|
num_steps = gr.Slider(8, 30, 12, step=1, label="Number of steps") |
|
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance") |
|
seed = gr.Textbox(label="Seed (-1 for random)", value="-1") |
|
with gr.Accordion("Advanced Options", open=False, visible=False): |
|
ref_res = gr.Slider(512, 1024, 512, step=16, label="resolution for ref image") |
|
neg_prompt = gr.Textbox(label="Neg Prompt", value="") |
|
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Neg Guidance") |
|
true_cfg = gr.Slider(1, 5, 1, step=0.1, label="true cfg") |
|
cfg_start_step = gr.Slider(0, 30, 0, step=1, label="cfg start step") |
|
cfg_end_step = gr.Slider(0, 30, 0, step=1, label="cfg end step") |
|
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="first step guidance") |
|
generate_btn = gr.Button("Generate") |
|
gr.Markdown(_CITE_) |
|
|
|
with gr.Column(): |
|
output_image = gr.Image(label="Generated Image", format='png') |
|
debug_image = gr.Gallery( |
|
label="Preprocessing output (including possible face crop and background remove)", |
|
elem_id="gallery", |
|
) |
|
seed_output = gr.Textbox(label="Used Seed") |
|
|
|
with gr.Row(), gr.Column(): |
|
gr.Markdown("## Examples") |
|
example_inps = [ |
|
[ |
|
'example_inputs/woman1.png', |
|
None, |
|
'ip', |
|
'ip', |
|
'profile shot dark photo of a 25-year-old female with smoke escaping from her mouth, the backlit smoke gives the image an ephemeral quality, natural face, natural eyebrows, natural skin texture, award winning photo, highly detailed face, atmospheric lighting, film grain, monochrome', |
|
9180879731249039735, |
|
], |
|
[ |
|
'example_inputs/man1.png', |
|
None, |
|
'ip', |
|
'ip', |
|
'a man sitting on the cloud, playing guitar', |
|
1206523688721442817, |
|
], |
|
[ |
|
'example_inputs/toy1.png', |
|
None, |
|
'ip', |
|
'ip', |
|
'a purple toy holding a sign saying "DreamO", on the mountain', |
|
1563188099017016129, |
|
], |
|
[ |
|
'example_inputs/perfume.png', |
|
None, |
|
'ip', |
|
'ip', |
|
'a perfume under spotlight', |
|
116150031980664704, |
|
], |
|
[ |
|
'example_inputs/hinton.jpeg', |
|
None, |
|
'id', |
|
'ip', |
|
'portrait, Chibi', |
|
5443415087540486371, |
|
], |
|
[ |
|
'example_inputs/mickey.png', |
|
None, |
|
'style', |
|
'ip', |
|
'generate a same style image. A rooster wearing overalls.', |
|
6245580464677124951, |
|
], |
|
[ |
|
'example_inputs/mountain.png', |
|
None, |
|
'style', |
|
'ip', |
|
'generate a same style image. A pavilion by the river, and the distant mountains are endless', |
|
5248066378927500767, |
|
], |
|
[ |
|
'example_inputs/shirt.png', |
|
'example_inputs/skirt.jpeg', |
|
'ip', |
|
'ip', |
|
'A girl is wearing a short-sleeved shirt and a short skirt on the beach.', |
|
9514069256241143615, |
|
], |
|
[ |
|
'example_inputs/woman2.png', |
|
'example_inputs/dress.png', |
|
'id', |
|
'ip', |
|
'the woman wearing a dress, In the banquet hall', |
|
7698454872441022867, |
|
], |
|
[ |
|
'example_inputs/dog1.png', |
|
'example_inputs/dog2.png', |
|
'ip', |
|
'ip', |
|
'two dogs in the jungle', |
|
6187006025405083344, |
|
], |
|
[ |
|
'example_inputs/woman3.png', |
|
'example_inputs/cat.png', |
|
'ip', |
|
'ip', |
|
'A girl rides a giant cat, walking in the noisy modern city. High definition, realistic, non-cartoonish. Excellent photography work, 8k high definition.', |
|
11980469406460273604, |
|
], |
|
[ |
|
'example_inputs/man2.jpeg', |
|
'example_inputs/woman4.jpeg', |
|
'ip', |
|
'ip', |
|
'a man is dancing with a woman in the room', |
|
8303780338601106219, |
|
], |
|
] |
|
gr.Examples( |
|
examples=example_inps, |
|
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed], |
|
label='row 1-4: IP task; row 5: ID task; row 6-7: Style task. row 8-9: Try-On task; row 10-12: Multi IP', |
|
cache_examples='lazy', |
|
outputs=[output_image, debug_image, seed_output], |
|
fn=generate_image, |
|
) |
|
|
|
generate_btn.click( |
|
fn=generate_image, |
|
inputs=[ |
|
ref_image1, |
|
ref_image2, |
|
ref_task1, |
|
ref_task2, |
|
prompt, |
|
seed, |
|
width, |
|
height, |
|
ref_res, |
|
num_steps, |
|
guidance, |
|
true_cfg, |
|
cfg_start_step, |
|
cfg_end_step, |
|
neg_prompt, |
|
neg_guidance, |
|
first_step_guidance, |
|
], |
|
outputs=[output_image, debug_image, seed_output], |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == '__main__': |
|
demo = create_demo() |
|
demo.launch(share = True) |
|
|