|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
|
|
sys.path.append("./") |
|
import copy |
|
import os |
|
import pdb |
|
import tempfile |
|
import time |
|
from bisect import bisect_left |
|
from dataclasses import dataclass |
|
|
|
import cv2 |
|
import numpy as np |
|
import PIL |
|
import torch |
|
from pytorch3d.ops import sample_farthest_points |
|
from sam2.build_sam import build_sam2 |
|
from sam2.sam2_image_predictor import SAM2ImagePredictor |
|
from torchvision import transforms |
|
|
|
from engine.BiRefNet.models.birefnet import BiRefNet |
|
from engine.ouputs import BaseOutput |
|
from engine.SegmentAPI.base import BaseSeg, Bbox |
|
from engine.SegmentAPI.img_utils import load_image_file |
|
|
|
SAM2_WEIGHT = "pretrained_models/sam2/sam2.1_hiera_large.pt" |
|
BIREFNET_WEIGHT = "pretrained_models/BiRefNet-general-epoch_244.pth" |
|
|
|
|
|
def avaliable_device(): |
|
if torch.cuda.is_available(): |
|
current_device_id = torch.cuda.current_device() |
|
device = f"cuda:{current_device_id}" |
|
else: |
|
device = "cpu" |
|
|
|
return device |
|
|
|
|
|
@dataclass |
|
class SegmentOut(BaseOutput): |
|
masks: np.ndarray |
|
processed_img: np.ndarray |
|
alpha_img: np.ndarray |
|
|
|
|
|
def distance(p1, p2): |
|
return np.sqrt(np.sum((p1 - p2) ** 2)) |
|
|
|
|
|
def FPS(sample, num): |
|
n = sample.shape[0] |
|
center = np.mean(sample, axis=0) |
|
select_p = [] |
|
L = [] |
|
for i in range(n): |
|
L.append(distance(sample[i], center)) |
|
p0 = np.argmax(L) |
|
select_p.append(p0) |
|
L = [] |
|
for i in range(n): |
|
L.append(distance(p0, sample[i])) |
|
select_p.append(np.argmax(L)) |
|
for i in range(num - 2): |
|
for p in range(n): |
|
d = distance(sample[select_p[-1]], sample[p]) |
|
if d <= L[p]: |
|
L[p] = d |
|
select_p.append(np.argmax(L)) |
|
return select_p, sample[select_p] |
|
|
|
|
|
def fill_mask(alpha): |
|
|
|
h, w = alpha.shape[:2] |
|
|
|
mask = np.zeros((h + 2, w + 2), np.uint8) |
|
alpha = (alpha * 255).astype(np.uint8) |
|
im_floodfill = alpha.copy() |
|
retval, image, mask, rect = cv2.floodFill(im_floodfill, mask, (0, 0), 255) |
|
im_floodfill_inv = cv2.bitwise_not(im_floodfill) |
|
|
|
alpha = alpha | im_floodfill_inv |
|
alpha = alpha.astype(np.float32) / 255.0 |
|
|
|
|
|
return alpha |
|
|
|
|
|
def erode_and_dialted(mask, kernel_size=3, iterations=1): |
|
kernel = np.ones((kernel_size, kernel_size), np.uint8) |
|
|
|
eroded_mask = cv2.erode(mask, kernel, iterations=iterations) |
|
|
|
dilated_mask = cv2.dilate(eroded_mask, kernel, iterations=iterations) |
|
|
|
return dilated_mask |
|
|
|
|
|
def eroded(mask, kernel_size=3, iterations=1): |
|
kernel = np.ones((kernel_size, kernel_size), np.uint8) |
|
eroded_mask = cv2.erode(mask, kernel, iterations=iterations) |
|
|
|
return eroded_mask |
|
|
|
|
|
def model_type(model): |
|
print(next(model.parameters()).device) |
|
|
|
|
|
class SAM2Seg(BaseSeg): |
|
RATIO_MAP = [[512, 1], [1280, 0.6], [1920, 0.4], [3840, 0.2]] |
|
|
|
def tocpu(self): |
|
self.box_prior.cpu() |
|
self.image_predictor.model.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
def tocuda(self): |
|
self.box_prior.cuda() |
|
self.image_predictor.model.cuda() |
|
|
|
def __init__( |
|
self, |
|
config="sam2.1_hiera_l.yaml", |
|
matting_config="resnet50", |
|
background=(1.0, 1.0, 1.0), |
|
wo_supres=False, |
|
): |
|
super().__init__() |
|
|
|
self.device = avaliable_device() |
|
|
|
try: |
|
sam2_image_model = build_sam2(config, SAM2_WEIGHT) |
|
except: |
|
config = os.path.join("./configs/sam2.1/", config) |
|
sam2_image_model = build_sam2(config, SAM2_WEIGHT) |
|
|
|
self.image_predictor = SAM2ImagePredictor(sam2_image_model) |
|
|
|
self.box_prior = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.background = background |
|
self.wo_supers = wo_supres |
|
|
|
def clean_up(self): |
|
self.tmp.cleanup() |
|
|
|
def collect_inputs(self, inputs): |
|
return dict( |
|
img_path=inputs["img_path"], |
|
bbox=inputs["bbox"], |
|
) |
|
|
|
def _super_resolution(self, input_path): |
|
|
|
low = os.path.abspath(input_path) |
|
high = self.tmp.name |
|
|
|
super_weights = os.path.abspath("./pretrained_models/RealESRGAN_x4plus.pth") |
|
hander = os.path.join(SUPRES_PATH, "inference_realesrgan.py") |
|
|
|
cmd = f"python {hander} -n RealESRGAN_x4plus -i {low} -o {high} --model_path {super_weights} -s 2" |
|
|
|
os.system(cmd) |
|
|
|
return os.path.join(high, os.path.basename(input_path)) |
|
|
|
def predict_bbox(self, img, scale=1.0): |
|
|
|
ratio = self.ratio_mapping(img) |
|
|
|
|
|
|
|
img = np.asarray(img).astype(np.float32) / 255.0 |
|
height, width, _ = img.shape |
|
|
|
|
|
img_tensor = torch.from_numpy(img).permute(2, 0, 1) |
|
|
|
bgr = torch.tensor([1.0, 1.0, 1.0]).view(3, 1, 1).cuda() |
|
rec = [None] * 4 |
|
|
|
|
|
with torch.no_grad(): |
|
img_tensor = img_tensor.unsqueeze(0).to(self.device) |
|
fgr, pha, *rec = self.matting_predictor( |
|
img_tensor.to(self.device), |
|
*rec, |
|
downsample_ratio=ratio, |
|
) |
|
|
|
pha[pha < 0.5] = 0.0 |
|
pha[pha >= 0.5] = 1.0 |
|
pha = pha[0].permute(1, 2, 0).detach().cpu().numpy() |
|
|
|
|
|
_h, _w, _ = np.where(pha == 1) |
|
|
|
whwh = [ |
|
_w.min().item(), |
|
_h.min().item(), |
|
_w.max().item(), |
|
_h.max().item(), |
|
] |
|
|
|
box = Bbox(whwh) |
|
|
|
|
|
scale_box = box.scale(1.00, width=width, height=height) |
|
|
|
return scale_box, pha[..., 0] |
|
|
|
def birefnet_predict_bbox(self, img, scale=1.0): |
|
|
|
|
|
|
|
if self.box_prior == None: |
|
from engine.BiRefNet.utils import check_state_dict |
|
|
|
birefnet = BiRefNet(bb_pretrained=False) |
|
state_dict = torch.load(BIREFNET_WEIGHT, map_location="cpu") |
|
state_dict = check_state_dict(state_dict) |
|
birefnet.load_state_dict(state_dict) |
|
device = avaliable_device() |
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
birefnet.to(device) |
|
self.box_prior = birefnet |
|
self.box_prior.eval() |
|
self.box_transform = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
print("BiRefNet is ready to use.") |
|
else: |
|
device = avaliable_device() |
|
self.box_prior.to(device) |
|
|
|
height, width, _ = img.shape |
|
|
|
image = PIL.Image.fromarray(img) |
|
|
|
input_images = self.box_transform(image).unsqueeze(0).to("cuda") |
|
with torch.no_grad(): |
|
preds = self.box_prior(input_images)[-1].sigmoid().cpu() |
|
pha = (preds[0]).squeeze(0).detach().numpy() |
|
|
|
pha = cv2.resize(pha, (width, height)) |
|
|
|
masks = copy.deepcopy(pha[..., None]) |
|
|
|
masks[masks < 0.3] = 0.0 |
|
masks[masks >= 0.3] = 1.0 |
|
|
|
|
|
_h, _w, _ = np.where(masks == 1) |
|
|
|
whwh = [ |
|
_w.min().item(), |
|
_h.min().item(), |
|
_w.max().item(), |
|
_h.max().item(), |
|
] |
|
|
|
box = Bbox(whwh) |
|
|
|
|
|
scale_box = box.scale(scale=scale, width=width, height=height) |
|
|
|
return scale_box, pha |
|
|
|
def rembg_predict_bbox(self, img, scale=1.0): |
|
|
|
height, width, _ = img.shape |
|
|
|
with torch.no_grad(): |
|
img_rmbg = img[..., ::-1] |
|
img_rmbg = remove(img_rmbg) |
|
img_rmbg = img_rmbg[..., :3] |
|
pha = copy.deepcopy(img_rmbg[..., -1:]) |
|
|
|
masks = copy.deepcopy(pha) |
|
|
|
masks[masks < 1.0] = 0.0 |
|
masks[masks >= 1.0] = 1.0 |
|
|
|
|
|
_h, _w, _ = np.where(masks == 1) |
|
|
|
whwh = [ |
|
_w.min().item(), |
|
_h.min().item(), |
|
_w.max().item(), |
|
_h.max().item(), |
|
] |
|
|
|
box = Bbox(whwh) |
|
|
|
|
|
scale_box = box.scale(scale=scale, width=width, height=height) |
|
|
|
return scale_box, pha[..., 0].astype(np.float32) / 255.0 |
|
|
|
def yolo_predict_bbox(self, img, scale=1.0, threshold=0.2): |
|
if self.prior == None: |
|
from ultralytics import YOLO |
|
|
|
pdb.set_trace() |
|
|
|
height, width, _ = img.shape |
|
|
|
with torch.no_grad(): |
|
results = yolo_seg(img[..., ::-1]) |
|
for result in results: |
|
masks = result.masks.data[result.boxes.cls == 0] |
|
if masks.shape[0] >= 1: |
|
masks[masks >= threshold] = 1 |
|
masks[masks < threshold] = 0 |
|
masks = masks.sum(dim=0) |
|
|
|
pha = masks.detach().cpu().numpy() |
|
pha = cv2.resize(pha, (width, height), interpolation=cv2.INTER_AREA)[..., None] |
|
|
|
pha[pha >= 0.5] = 1 |
|
pha[pha < 0.5] = 0 |
|
|
|
masks = copy.deepcopy(pha) |
|
|
|
pha = pha * 255.0 |
|
|
|
_h, _w, _ = np.where(masks == 1) |
|
|
|
whwh = [ |
|
_w.min().item(), |
|
_h.min().item(), |
|
_w.max().item(), |
|
_h.max().item(), |
|
] |
|
|
|
box = Bbox(whwh) |
|
|
|
|
|
scale_box = box.scale(scale=scale, width=width, height=height) |
|
|
|
return scale_box, pha[..., 0].astype(np.float32) / 255.0 |
|
|
|
def ratio_mapping(self, img): |
|
|
|
my_ratio_map = self.RATIO_MAP |
|
|
|
ratio_landmarks = [v[0] for v in my_ratio_map] |
|
|
|
ratio_v = [v[1] for v in my_ratio_map] |
|
h, w, _ = img.shape |
|
|
|
max_length = min(h, w) |
|
|
|
low_bound = bisect_left( |
|
ratio_landmarks, max_length, lo=0, hi=len(ratio_landmarks) |
|
) |
|
|
|
if 0 == low_bound: |
|
return 1.0 |
|
elif low_bound == len(ratio_landmarks): |
|
return ratio_v[-1] |
|
else: |
|
_l = ratio_v[low_bound - 1] |
|
_r = ratio_v[low_bound] |
|
|
|
_l_land = ratio_landmarks[low_bound - 1] |
|
_r_land = ratio_landmarks[low_bound] |
|
cur_ratio = _l + (_r - _l) * (max_length - _l_land) / (_r_land - _l_land) |
|
|
|
return cur_ratio |
|
|
|
def get_img(self, img_path, sup_res=True): |
|
|
|
img = cv2.imread(img_path) |
|
img = img[..., ::-1].copy() |
|
|
|
if self.wo_supers: |
|
return img |
|
|
|
return img |
|
|
|
def compute_coords(self, pha, bbox): |
|
|
|
node_prompts = [] |
|
|
|
H, W = pha.shape |
|
y_indices, x_indices = np.indices((H, W)) |
|
coors = np.stack((x_indices, y_indices), axis=-1) |
|
|
|
|
|
|
|
|
|
pha_coors = np.repeat(pha[..., None], 2, axis=2) |
|
coors_points = (coors * pha_coors).sum(axis=0).sum(axis=0) / (pha.sum() + 1e-6) |
|
node_prompts.append(coors_points.tolist()) |
|
|
|
_h, _w = np.where(pha > 0.5) |
|
|
|
sample_ps = torch.from_numpy(np.stack((_w, _h), axis=-1).astype(np.float32)).to( |
|
avaliable_device() |
|
) |
|
|
|
|
|
node_prompts_fps, _ = sample_farthest_points(sample_ps[None], K=5) |
|
node_prompts_fps = ( |
|
node_prompts_fps[0].detach().cpu().numpy().astype(np.int32).tolist() |
|
) |
|
|
|
node_prompts.extend(node_prompts_fps) |
|
node_prompts_label = [1 for _ in range(len(node_prompts))] |
|
|
|
return node_prompts, node_prompts_label |
|
|
|
def _forward(self, img_path, bbox, sup_res=True): |
|
|
|
img = self.get_img(img_path, sup_res) |
|
|
|
if bbox is None: |
|
|
|
|
|
|
|
bbox, pha = self.birefnet_predict_bbox(img, 1.01) |
|
|
|
box = bbox.to_whwh() |
|
bbox = box.get_box() |
|
|
|
point_coords, point_coords_label = self.compute_coords(pha, bbox) |
|
|
|
self.image_predictor.set_image(img) |
|
|
|
masks, scores, logits = self.image_predictor.predict( |
|
point_coords=point_coords, |
|
point_labels=point_coords_label, |
|
box=bbox, |
|
multimask_output=False, |
|
) |
|
|
|
alpha = masks[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_float = img.astype(np.float32) / 255.0 |
|
process_img = ( |
|
img_float * alpha[..., None] + (1 - alpha[..., None]) * self.background |
|
) |
|
process_img = (process_img * 255).astype(np.uint8) |
|
|
|
|
|
|
|
process_img = process_img.astype(np.float) / 255.0 |
|
|
|
process_pha_img = ( |
|
img_float * pha[..., None] + (1 - pha[..., None]) * self.background |
|
) |
|
|
|
return SegmentOut( |
|
masks=alpha, processed_img=process_img, alpha_img=process_pha_img[...] |
|
) |
|
|
|
@torch.no_grad() |
|
def __call__(self, **inputs): |
|
|
|
self.tmp = tempfile.TemporaryDirectory() |
|
|
|
self.collect_inputs(inputs) |
|
|
|
out = self._forward(**inputs) |
|
|
|
self.clean_up() |
|
return out |
|
|
|
|
|
def get_parse(): |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description="") |
|
parser.add_argument("-i", "--input", required=True, help="input path") |
|
parser.add_argument("-o", "--output", required=True, help="output path") |
|
parser.add_argument("--mask", action="store_true", help="mask bool") |
|
parser.add_argument( |
|
"--wo_super_reso", action="store_true", help="whether using super_resolution" |
|
) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
|
|
opt = get_parse() |
|
img_list = os.listdir(opt.input) |
|
img_names = [os.path.join(opt.input, img_name) for img_name in img_list] |
|
|
|
os.makedirs(opt.output, exist_ok=True) |
|
|
|
model = SAM2Seg(wo_supres=opt.wo_super_reso) |
|
|
|
for img in img_names: |
|
|
|
print(f"processing {img}") |
|
out = model(img_path=img, bbox=None) |
|
|
|
save_path = os.path.join(opt.output, os.path.basename(img)) |
|
|
|
alpha = fill_mask(out.masks) |
|
alpha = erode_and_dialted( |
|
(alpha * 255).astype(np.uint8), kernel_size=3, iterations=3 |
|
) |
|
save_img = alpha |
|
cv2.imwrite(save_path, save_img) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
main() |
|
|