File size: 7,900 Bytes
4f2eaa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import gc
import numpy as np
import torch
import spaces
import gradio as gr
from moviepy.editor import VideoFileClip, concatenate_videoclips
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video
from huggingface_hub import hf_hub_download

examples = [
    ['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280],
    ['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280],
    ['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280],
    ['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280],
    ['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280],
    ['assets/example_videos/davis_burnout.mp4', -1, -1, 1280],
    ['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280],
    ['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280],
    ['assets/example_videos/obj_1.mp4', -1, -1, 1280],
    ['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280],
]

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}

encoder2name = {
    'vits': 'Small',
    'vitl': 'Large',
}

#encoder = 'vitl'
encoder = 'vits'
model_name = encoder2name[encoder]

video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model")
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()

title = "# Video Depth Anything"
description = """Official demo for ​**Video Depth Anything**.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""

@spaces.GPU(duration=240)
def infer_video_depth(
    input_video: str,
    max_len: int = -1,
    target_fps: int = -1,
    max_res: int = 1280,
    grayscale: bool = False,
    output_dir: str = './outputs',
    input_size: int = 518,
):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    video_name = os.path.basename(input_video)
    processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4')
    depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4')

    # Load the video
    clip = VideoFileClip(input_video)
    fps = clip.fps
    total_frames = int(clip.duration * fps)

    # Define the number of frames per segment
    frames_per_segment = 45  # Adjust this value based on your GPU memory
    segments = []
    for start_frame in range(0, total_frames, frames_per_segment):
        end_frame = min(start_frame + frames_per_segment, total_frames)
        start_time = start_frame / fps
        end_time = end_frame / fps
        segment = clip.subclip(start_time, end_time)
        segment_path = os.path.join(output_dir, f'segment_{start_frame}.mp4')
        segment.write_videofile(segment_path, codec='libx264')
        segments.append(segment_path)

    # Save the processed video (concatenated segments)
    processed_segments = [VideoFileClip(segment) for segment in segments]
    final_processed_clip = concatenate_videoclips(processed_segments)
    final_processed_clip.write_videofile(processed_video_path, codec='libx264')

    # Process each segment
    depth_segments = []
    for segment in segments:
        frames, target_fps = read_video_frames(segment, max_len, target_fps, max_res)
        print("frame length", len(frames))
        depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
        depth_segment_path = os.path.join(output_dir, f'depth_{os.path.basename(segment)}')
        save_video(depths, depth_segment_path, fps=fps, is_depths=True, grayscale=grayscale)
        depth_segments.append(depth_segment_path)

    # Merge depth segments
    depth_clips = [VideoFileClip(depth_segment) for depth_segment in depth_segments]
    final_depth_clip = concatenate_videoclips(depth_clips)
    final_depth_clip.write_videofile(depth_vis_path, codec='libx264')

    # Clean up
    for segment in segments:
        os.remove(segment)
    for depth_segment in depth_segments:
        os.remove(depth_segment)

    gc.collect()
    torch.cuda.empty_cache()

    return [processed_video_path, depth_vis_path]

def construct_demo():
    with gr.Blocks(analytics_enabled=False) as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        gr.Markdown("### If you find this work useful, please help ⭐ the [$$Github Repo$$](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_video = gr.Video(label="Input Video")

            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    processed_video = gr.Video(
                        label="Preprocessed video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )
                    depth_vis_video = gr.Video(
                        label="Generated Depth Video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    with gr.Accordion("Advanced Settings", open=False):
                        max_len = gr.Slider(
                            label="max process length",
                            minimum=-1,
                            maximum=1000,
                            value=500,
                            step=1,
                        )
                        target_fps = gr.Slider(
                            label="target FPS",
                            minimum=-1,
                            maximum=30,
                            value=15,
                            step=1,
                        )
                        max_res = gr.Slider(
                            label="max side resolution",
                            minimum=480,
                            maximum=1920,
                            value=1280,
                            step=1,
                        )
                        grayscale = gr.Checkbox(
                            label="grayscale",
                            value=False,
                        )
                    generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass

        gr.Examples(
            examples=examples,
            inputs=[
                input_video,
                max_len,
                target_fps,
                max_res
            ],
            outputs=[processed_video, depth_vis_video],
            fn=infer_video_depth,
            cache_examples="lazy",
        )

        generate_btn.click(
            fn=infer_video_depth,
            inputs=[
                input_video,
                max_len,
                target_fps,
                max_res,
                grayscale
            ],
            outputs=[processed_video, depth_vis_video],
        )

    return demo

if __name__ == "__main__":
    demo = construct_demo()
    demo.queue()
    demo.launch(share=True)