Spaces:
Runtime error
Runtime error
from typing import Dict, List, Optional, Union | |
import torch | |
import torch.nn as nn | |
from accelerate.logging import get_logger | |
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel | |
from PIL import Image | |
from transformers import T5EncoderModel, T5Tokenizer | |
logger = get_logger("finetrainers") # pylint: disable=invalid-name | |
def load_condition_models( | |
model_id: str = "Lightricks/LTX-Video", | |
text_encoder_dtype: torch.dtype = torch.bfloat16, | |
revision: Optional[str] = None, | |
cache_dir: Optional[str] = None, | |
**kwargs, | |
) -> Dict[str, nn.Module]: | |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, cache_dir=cache_dir) | |
text_encoder = T5EncoderModel.from_pretrained( | |
model_id, subfolder="text_encoder", torch_dtype=text_encoder_dtype, revision=revision, cache_dir=cache_dir | |
) | |
return {"tokenizer": tokenizer, "text_encoder": text_encoder} | |
def load_latent_models( | |
model_id: str = "Lightricks/LTX-Video", | |
vae_dtype: torch.dtype = torch.bfloat16, | |
revision: Optional[str] = None, | |
cache_dir: Optional[str] = None, | |
**kwargs, | |
) -> Dict[str, nn.Module]: | |
vae = AutoencoderKLLTXVideo.from_pretrained( | |
model_id, subfolder="vae", torch_dtype=vae_dtype, revision=revision, cache_dir=cache_dir | |
) | |
return {"vae": vae} | |
def load_diffusion_models( | |
model_id: str = "Lightricks/LTX-Video", | |
transformer_dtype: torch.dtype = torch.bfloat16, | |
revision: Optional[str] = None, | |
cache_dir: Optional[str] = None, | |
**kwargs, | |
) -> Dict[str, nn.Module]: | |
transformer = LTXVideoTransformer3DModel.from_pretrained( | |
model_id, subfolder="transformer", torch_dtype=transformer_dtype, revision=revision, cache_dir=cache_dir | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return {"transformer": transformer, "scheduler": scheduler} | |
def initialize_pipeline( | |
model_id: str = "Lightricks/LTX-Video", | |
text_encoder_dtype: torch.dtype = torch.bfloat16, | |
transformer_dtype: torch.dtype = torch.bfloat16, | |
vae_dtype: torch.dtype = torch.bfloat16, | |
tokenizer: Optional[T5Tokenizer] = None, | |
text_encoder: Optional[T5EncoderModel] = None, | |
transformer: Optional[LTXVideoTransformer3DModel] = None, | |
vae: Optional[AutoencoderKLLTXVideo] = None, | |
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None, | |
device: Optional[torch.device] = None, | |
revision: Optional[str] = None, | |
cache_dir: Optional[str] = None, | |
enable_slicing: bool = False, | |
enable_tiling: bool = False, | |
enable_model_cpu_offload: bool = False, | |
is_training: bool = False, | |
**kwargs, | |
) -> LTXPipeline: | |
component_name_pairs = [ | |
("tokenizer", tokenizer), | |
("text_encoder", text_encoder), | |
("transformer", transformer), | |
("vae", vae), | |
("scheduler", scheduler), | |
] | |
components = {} | |
for name, component in component_name_pairs: | |
if component is not None: | |
components[name] = component | |
pipe = LTXPipeline.from_pretrained(model_id, **components, revision=revision, cache_dir=cache_dir) | |
pipe.text_encoder = pipe.text_encoder.to(dtype=text_encoder_dtype) | |
pipe.vae = pipe.vae.to(dtype=vae_dtype) | |
# The transformer should already be in the correct dtype when training, so we don't need to cast it here. | |
# If we cast, whilst using fp8 layerwise upcasting hooks, it will lead to an error in the training during | |
# DDP optimizer step. | |
if not is_training: | |
pipe.transformer = pipe.transformer.to(dtype=transformer_dtype) | |
if enable_slicing: | |
pipe.vae.enable_slicing() | |
if enable_tiling: | |
pipe.vae.enable_tiling() | |
if enable_model_cpu_offload: | |
pipe.enable_model_cpu_offload(device=device) | |
else: | |
pipe.to(device=device) | |
return pipe | |
def prepare_conditions( | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
prompt: Union[str, List[str]], | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
max_sequence_length: int = 128, | |
**kwargs, | |
) -> torch.Tensor: | |
device = device or text_encoder.device | |
dtype = dtype or text_encoder.dtype | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
return _encode_prompt_t5(tokenizer, text_encoder, prompt, device, dtype, max_sequence_length) | |
def prepare_latents( | |
vae: AutoencoderKLLTXVideo, | |
image_or_video: torch.Tensor, | |
patch_size: int = 1, | |
patch_size_t: int = 1, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
generator: Optional[torch.Generator] = None, | |
precompute: bool = False, | |
) -> torch.Tensor: | |
device = device or vae.device | |
if image_or_video.ndim == 4: | |
image_or_video = image_or_video.unsqueeze(2) | |
assert image_or_video.ndim == 5, f"Expected 5D tensor, got {image_or_video.ndim}D tensor" | |
image_or_video = image_or_video.to(device=device, dtype=vae.dtype) | |
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, C, F, H, W] -> [B, F, C, H, W] | |
if not precompute: | |
latents = vae.encode(image_or_video).latent_dist.sample(generator=generator) | |
latents = latents.to(dtype=dtype) | |
_, _, num_frames, height, width = latents.shape | |
latents = _normalize_latents(latents, vae.latents_mean, vae.latents_std) | |
latents = _pack_latents(latents, patch_size, patch_size_t) | |
return {"latents": latents, "num_frames": num_frames, "height": height, "width": width} | |
else: | |
if vae.use_slicing and image_or_video.shape[0] > 1: | |
encoded_slices = [vae._encode(x_slice) for x_slice in image_or_video.split(1)] | |
h = torch.cat(encoded_slices) | |
else: | |
h = vae._encode(image_or_video) | |
_, _, num_frames, height, width = h.shape | |
# TODO(aryan): This is very stupid that we might possibly be storing the latents_mean and latents_std in every file | |
# if precomputation is enabled. We should probably have a single file where re-usable properties like this are stored | |
# so as to reduce the disk memory requirements of the precomputed files. | |
return { | |
"latents": h, | |
"num_frames": num_frames, | |
"height": height, | |
"width": width, | |
"latents_mean": vae.latents_mean, | |
"latents_std": vae.latents_std, | |
} | |
def post_latent_preparation( | |
latents: torch.Tensor, | |
latents_mean: torch.Tensor, | |
latents_std: torch.Tensor, | |
num_frames: int, | |
height: int, | |
width: int, | |
patch_size: int = 1, | |
patch_size_t: int = 1, | |
**kwargs, | |
) -> torch.Tensor: | |
latents = _normalize_latents(latents, latents_mean, latents_std) | |
latents = _pack_latents(latents, patch_size, patch_size_t) | |
return {"latents": latents, "num_frames": num_frames, "height": height, "width": width} | |
def collate_fn_t2v(batch: List[List[Dict[str, torch.Tensor]]]) -> Dict[str, torch.Tensor]: | |
return { | |
"prompts": [x["prompt"] for x in batch[0]], | |
"videos": torch.stack([x["video"] for x in batch[0]]), | |
} | |
def forward_pass( | |
transformer: LTXVideoTransformer3DModel, | |
prompt_embeds: torch.Tensor, | |
prompt_attention_mask: torch.Tensor, | |
latents: torch.Tensor, | |
noisy_latents: torch.Tensor, | |
timesteps: torch.LongTensor, | |
num_frames: int, | |
height: int, | |
width: int, | |
**kwargs, | |
) -> torch.Tensor: | |
# TODO(aryan): make configurable | |
frame_rate = 25 | |
latent_frame_rate = frame_rate / 8 | |
spatial_compression_ratio = 32 | |
rope_interpolation_scale = [1 / latent_frame_rate, spatial_compression_ratio, spatial_compression_ratio] | |
denoised_latents = transformer( | |
hidden_states=noisy_latents, | |
encoder_hidden_states=prompt_embeds, | |
timestep=timesteps, | |
encoder_attention_mask=prompt_attention_mask, | |
num_frames=num_frames, | |
height=height, | |
width=width, | |
rope_interpolation_scale=rope_interpolation_scale, | |
return_dict=False, | |
)[0] | |
return {"latents": denoised_latents} | |
def validation( | |
pipeline: LTXPipeline, | |
prompt: str, | |
image: Optional[Image.Image] = None, | |
video: Optional[List[Image.Image]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_frames: Optional[int] = None, | |
frame_rate: int = 24, | |
num_videos_per_prompt: int = 1, | |
generator: Optional[torch.Generator] = None, | |
**kwargs, | |
): | |
generation_kwargs = { | |
"prompt": prompt, | |
"height": height, | |
"width": width, | |
"num_frames": num_frames, | |
"frame_rate": frame_rate, | |
"num_videos_per_prompt": num_videos_per_prompt, | |
"generator": generator, | |
"return_dict": True, | |
"output_type": "pil", | |
} | |
generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None} | |
video = pipeline(**generation_kwargs).frames[0] | |
return [("video", video)] | |
def _encode_prompt_t5( | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
prompt: List[str], | |
device: torch.device, | |
dtype: torch.dtype, | |
max_sequence_length, | |
) -> torch.Tensor: | |
batch_size = len(prompt) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_attention_mask = text_inputs.attention_mask | |
prompt_attention_mask = prompt_attention_mask.bool().to(device) | |
prompt_embeds = text_encoder(text_input_ids.to(device))[0] | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) | |
return {"prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attention_mask} | |
def _normalize_latents( | |
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0 | |
) -> torch.Tensor: | |
# Normalize latents across the channel dimension [B, C, F, H, W] | |
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) | |
latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) | |
latents = (latents - latents_mean) * scaling_factor / latents_std | |
return latents | |
def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor: | |
# Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p]. | |
# The patch dimensions are then permuted and collapsed into the channel dimension of shape: | |
# [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor). | |
# dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features | |
batch_size, num_channels, num_frames, height, width = latents.shape | |
post_patch_num_frames = num_frames // patch_size_t | |
post_patch_height = height // patch_size | |
post_patch_width = width // patch_size | |
latents = latents.reshape( | |
batch_size, | |
-1, | |
post_patch_num_frames, | |
patch_size_t, | |
post_patch_height, | |
patch_size, | |
post_patch_width, | |
patch_size, | |
) | |
latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3) | |
return latents | |
LTX_VIDEO_T2V_LORA_CONFIG = { | |
"pipeline_cls": LTXPipeline, | |
"load_condition_models": load_condition_models, | |
"load_latent_models": load_latent_models, | |
"load_diffusion_models": load_diffusion_models, | |
"initialize_pipeline": initialize_pipeline, | |
"prepare_conditions": prepare_conditions, | |
"prepare_latents": prepare_latents, | |
"post_latent_preparation": post_latent_preparation, | |
"collate_fn": collate_fn_t2v, | |
"forward_pass": forward_pass, | |
"validation": validation, | |
} | |