jbilcke-hf's picture
jbilcke-hf HF Staff
initial commit log 🪵🦫
91fb4ef
import random
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as TT
from accelerate.logging import get_logger
from torch.utils.data import Dataset, Sampler
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger(__name__)
HEIGHT_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536]
WIDTH_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536]
FRAME_BUCKETS = [16, 24, 32, 48, 64, 80]
class VideoDataset(Dataset):
def __init__(
self,
data_root: str,
dataset_file: Optional[str] = None,
caption_column: str = "text",
video_column: str = "video",
max_num_frames: int = 49,
id_token: Optional[str] = None,
height_buckets: List[int] = None,
width_buckets: List[int] = None,
frame_buckets: List[int] = None,
load_tensors: bool = False,
random_flip: Optional[float] = None,
image_to_video: bool = False,
) -> None:
super().__init__()
self.data_root = Path(data_root)
self.dataset_file = dataset_file
self.caption_column = caption_column
self.video_column = video_column
self.max_num_frames = max_num_frames
self.id_token = f"{id_token.strip()} " if id_token else ""
self.height_buckets = height_buckets or HEIGHT_BUCKETS
self.width_buckets = width_buckets or WIDTH_BUCKETS
self.frame_buckets = frame_buckets or FRAME_BUCKETS
self.load_tensors = load_tensors
self.random_flip = random_flip
self.image_to_video = image_to_video
self.resolutions = [
(f, h, w) for h in self.height_buckets for w in self.width_buckets for f in self.frame_buckets
]
# Two methods of loading data are supported.
# - Using a CSV: caption_column and video_column must be some column in the CSV. One could
# make use of other columns too, such as a motion score or aesthetic score, by modifying the
# logic in CSV processing.
# - Using two files containing line-separate captions and relative paths to videos.
# For a more detailed explanation about preparing dataset format, checkout the README.
if dataset_file is None:
(
self.prompts,
self.video_paths,
) = self._load_dataset_from_local_path()
else:
(
self.prompts,
self.video_paths,
) = self._load_dataset_from_csv()
if len(self.video_paths) != len(self.prompts):
raise ValueError(
f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset."
)
self.video_transforms = transforms.Compose(
[
transforms.RandomHorizontalFlip(random_flip)
if random_flip
else transforms.Lambda(self.identity_transform),
transforms.Lambda(self.scale_transform),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
@staticmethod
def identity_transform(x):
return x
@staticmethod
def scale_transform(x):
return x / 255.0
def __len__(self) -> int:
return len(self.video_paths)
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
# Here, index is actually a list of data objects that we need to return.
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
# to have information about num_frames, height and width. Since this is not stored
# as metadata, we need to read the video to get this information. You could read this
# information without loading the full video in memory, but we do it anyway. In order
# to not load the video twice (once to get the metadata, and once to return the loaded video
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
# to yield, we yield the cache data instead of indices. So, this special check ensures
# that data is not loaded a second time. PRs are welcome for improvements.
return index
if self.load_tensors:
image_latents, video_latents, prompt_embeds = self._preprocess_video(self.video_paths[index])
# This is hardcoded for now.
# The VAE's temporal compression ratio is 4.
# The VAE's spatial compression ratio is 8.
latent_num_frames = video_latents.size(1)
if latent_num_frames % 2 == 0:
num_frames = latent_num_frames * 4
else:
num_frames = (latent_num_frames - 1) * 4 + 1
height = video_latents.size(2) * 8
width = video_latents.size(3) * 8
return {
"prompt": prompt_embeds,
"image": image_latents,
"video": video_latents,
"video_metadata": {
"num_frames": num_frames,
"height": height,
"width": width,
},
}
else:
image, video, _ = self._preprocess_video(self.video_paths[index])
return {
"prompt": self.id_token + self.prompts[index],
"image": image,
"video": video,
"video_metadata": {
"num_frames": video.shape[0],
"height": video.shape[2],
"width": video.shape[3],
},
}
def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str]]:
if not self.data_root.exists():
raise ValueError("Root folder for videos does not exist")
prompt_path = self.data_root.joinpath(self.caption_column)
video_path = self.data_root.joinpath(self.video_column)
if not prompt_path.exists() or not prompt_path.is_file():
raise ValueError(
"Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts."
)
if not video_path.exists() or not video_path.is_file():
raise ValueError(
"Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory."
)
with open(prompt_path, "r", encoding="utf-8") as file:
prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
with open(video_path, "r", encoding="utf-8") as file:
video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
if not self.load_tensors and any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
)
return prompts, video_paths
def _load_dataset_from_csv(self) -> Tuple[List[str], List[str]]:
df = pd.read_csv(self.dataset_file)
prompts = df[self.caption_column].tolist()
video_paths = df[self.video_column].tolist()
video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths]
if any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
)
return prompts, video_paths
def _preprocess_video(self, path: Path) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
r"""
Loads a single video, or latent and prompt embedding, based on initialization parameters.
If returning a video, returns a [F, C, H, W] video tensor, and None for the prompt embedding. Here,
F, C, H and W are the frames, channels, height and width of the input video.
If returning latent/embedding, returns a [F, C, H, W] latent, and the prompt embedding of shape [S, D].
F, C, H and W are the frames, channels, height and width of the latent, and S, D are the sequence length
and embedding dimension of prompt embeddings.
"""
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
indices = list(range(0, video_num_frames, video_num_frames // self.max_num_frames))
frames = video_reader.get_batch(indices)
frames = frames[: self.max_num_frames].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
frames = torch.stack([self.video_transforms(frame) for frame in frames], dim=0)
image = frames[:1].clone() if self.image_to_video else None
return image, frames, None
def _load_preprocessed_latents_and_embeds(self, path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
filename_without_ext = path.name.split(".")[0]
pt_filename = f"{filename_without_ext}.pt"
# The current path is something like: /a/b/c/d/videos/00001.mp4
# We need to reach: /a/b/c/d/video_latents/00001.pt
image_latents_path = path.parent.parent.joinpath("image_latents")
video_latents_path = path.parent.parent.joinpath("video_latents")
embeds_path = path.parent.parent.joinpath("prompt_embeds")
if (
not video_latents_path.exists()
or not embeds_path.exists()
or (self.image_to_video and not image_latents_path.exists())
):
raise ValueError(
f"When setting the load_tensors parameter to `True`, it is expected that the `{self.data_root=}` contains two folders named `video_latents` and `prompt_embeds`. However, these folders were not found. Please make sure to have prepared your data correctly using `prepare_data.py`. Additionally, if you're training image-to-video, it is expected that an `image_latents` folder is also present."
)
if self.image_to_video:
image_latent_filepath = image_latents_path.joinpath(pt_filename)
video_latent_filepath = video_latents_path.joinpath(pt_filename)
embeds_filepath = embeds_path.joinpath(pt_filename)
if not video_latent_filepath.is_file() or not embeds_filepath.is_file():
if self.image_to_video:
image_latent_filepath = image_latent_filepath.as_posix()
video_latent_filepath = video_latent_filepath.as_posix()
embeds_filepath = embeds_filepath.as_posix()
raise ValueError(
f"The file {video_latent_filepath=} or {embeds_filepath=} could not be found. Please ensure that you've correctly executed `prepare_dataset.py`."
)
images = (
torch.load(image_latent_filepath, map_location="cpu", weights_only=True) if self.image_to_video else None
)
latents = torch.load(video_latent_filepath, map_location="cpu", weights_only=True)
embeds = torch.load(embeds_filepath, map_location="cpu", weights_only=True)
return images, latents, embeds
class VideoDatasetWithResizing(VideoDataset):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def _preprocess_video(self, path: Path) -> torch.Tensor:
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
nearest_frame_bucket = min(
self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames))
)
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
image = frames[:1].clone() if self.image_to_video else None
return image, frames, None
def _find_nearest_resolution(self, height, width):
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
return nearest_res[1], nearest_res[2]
class VideoDatasetWithResizeAndRectangleCrop(VideoDataset):
def __init__(self, video_reshape_mode: str = "center", *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.video_reshape_mode = video_reshape_mode
def _resize_for_rectangle_crop(self, arr, image_size):
reshape_mode = self.video_reshape_mode
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
arr = resize(
arr,
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
interpolation=InterpolationMode.BICUBIC,
)
else:
arr = resize(
arr,
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
interpolation=InterpolationMode.BICUBIC,
)
h, w = arr.shape[2], arr.shape[3]
arr = arr.squeeze(0)
delta_h = h - image_size[0]
delta_w = w - image_size[1]
if reshape_mode == "random" or reshape_mode == "none":
top = np.random.randint(0, delta_h + 1)
left = np.random.randint(0, delta_w + 1)
elif reshape_mode == "center":
top, left = delta_h // 2, delta_w // 2
else:
raise NotImplementedError
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
return arr
def _preprocess_video(self, path: Path) -> torch.Tensor:
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
nearest_frame_bucket = min(
self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames))
)
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
frames_resized = self._resize_for_rectangle_crop(frames, nearest_res)
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
image = frames[:1].clone() if self.image_to_video else None
return image, frames, None
def _find_nearest_resolution(self, height, width):
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
return nearest_res[1], nearest_res[2]
class BucketSampler(Sampler):
r"""
PyTorch Sampler that groups 3D data by height, width and frames.
Args:
data_source (`VideoDataset`):
A PyTorch dataset object that is an instance of `VideoDataset`.
batch_size (`int`, defaults to `8`):
The batch size to use for training.
shuffle (`bool`, defaults to `True`):
Whether or not to shuffle the data in each batch before dispatching to dataloader.
drop_last (`bool`, defaults to `False`):
Whether or not to drop incomplete buckets of data after completely iterating over all data
in the dataset. If set to True, only batches that have `batch_size` number of entries will
be yielded. If set to False, it is guaranteed that all data in the dataset will be processed
and batches that do not have `batch_size` number of entries will also be yielded.
"""
def __init__(
self, data_source: VideoDataset, batch_size: int = 8, shuffle: bool = True, drop_last: bool = False
) -> None:
self.data_source = data_source
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
self.buckets = {resolution: [] for resolution in data_source.resolutions}
self._raised_warning_for_drop_last = False
def __len__(self):
if self.drop_last and not self._raised_warning_for_drop_last:
self._raised_warning_for_drop_last = True
logger.warning(
"Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training."
)
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
def __iter__(self):
for index, data in enumerate(self.data_source):
video_metadata = data["video_metadata"]
f, h, w = video_metadata["num_frames"], video_metadata["height"], video_metadata["width"]
self.buckets[(f, h, w)].append(data)
if len(self.buckets[(f, h, w)]) == self.batch_size:
if self.shuffle:
random.shuffle(self.buckets[(f, h, w)])
yield self.buckets[(f, h, w)]
del self.buckets[(f, h, w)]
self.buckets[(f, h, w)] = []
if self.drop_last:
return
for fhw, bucket in list(self.buckets.items()):
if len(bucket) == 0:
continue
if self.shuffle:
random.shuffle(bucket)
yield bucket
del self.buckets[fhw]
self.buckets[fhw] = []