Spaces:
Sleeping
Sleeping
File size: 4,001 Bytes
9223079 49a0323 9223079 e15a186 4c930ba 9223079 e15a186 9223079 e15a186 9223079 e15a186 9223079 e15a186 9223079 e15a186 9223079 e15a186 49a0323 e15a186 9223079 e15a186 9223079 4c930ba 9223079 6cb641c 3c77caa 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import sys
import torch
from ..utils.base_model import BaseModel
from ..utils import do_system
from pathlib import Path
import subprocess
from .. import logger
sys.path.append(str(Path(__file__).parent / "../../third_party"))
from ASpanFormer.src.ASpanFormer.aspanformer import ASpanFormer as _ASpanFormer
from ASpanFormer.src.config.default import get_cfg_defaults
from ASpanFormer.src.utils.misc import lower_config
from ASpanFormer.demo import demo_utils
aspanformer_path = Path(__file__).parent / "../../third_party/ASpanFormer"
class ASpanFormer(BaseModel):
default_conf = {
"weights": "outdoor",
"match_threshold": 0.2,
"sinkhorn_iterations": 20,
"max_keypoints": 2048,
"config_path": aspanformer_path / "configs/aspan/outdoor/aspan_test.py",
"model_name": "weights_aspanformer.tar",
}
required_inputs = ["image0", "image1"]
proxy = "http://localhost:1080"
aspanformer_models = {
"weights_aspanformer.tar": "https://drive.google.com/uc?id=1eavM9dTkw9nbc-JqlVVfGPU5UvTTfc6k&confirm=t"
}
def _init(self, conf):
model_path = (
aspanformer_path / "weights" / Path(conf["weights"] + ".ckpt")
)
# Download the model.
if not model_path.exists():
# model_path.parent.mkdir(exist_ok=True)
tar_path = aspanformer_path / conf["model_name"]
if not tar_path.exists():
link = self.aspanformer_models[conf["model_name"]]
cmd = [
"gdown",
link,
"-O",
str(tar_path),
"--proxy",
self.proxy,
]
cmd_wo_proxy = ["gdown", link, "-O", str(tar_path)]
logger.info(
f"Downloading the Aspanformer model with `{cmd_wo_proxy}`."
)
try:
subprocess.run(cmd_wo_proxy, check=True)
except subprocess.CalledProcessError as e:
logger.info(
f"Downloading the Aspanformer model with `{cmd}`."
)
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
logger.error(
f"Failed to download the Aspanformer model."
)
raise e
do_system(f"cd {str(aspanformer_path)} & tar -xvf {str(tar_path)}")
config = get_cfg_defaults()
config.merge_from_file(conf["config_path"])
_config = lower_config(config)
# update: match threshold
_config["aspan"]["match_coarse"]["thr"] = conf["match_threshold"]
_config["aspan"]["match_coarse"]["skh_iters"] = conf[
"sinkhorn_iterations"
]
self.net = _ASpanFormer(config=_config["aspan"])
weight_path = model_path
state_dict = torch.load(str(weight_path), map_location="cpu")[
"state_dict"
]
self.net.load_state_dict(state_dict, strict=False)
logger.info(f"Loaded Aspanformer model")
def _forward(self, data):
data_ = {
"image0": data["image0"],
"image1": data["image1"],
}
self.net(data_, online_resize=True)
pred = {
"keypoints0": data_["mkpts0_f"],
"keypoints1": data_["mkpts1_f"],
"mconf": data_["mconf"],
}
scores = data_["mconf"]
top_k = self.conf["max_keypoints"]
if top_k is not None and len(scores) > top_k:
keep = torch.argsort(scores, descending=True)[:top_k]
scores = scores[keep]
pred["keypoints0"], pred["keypoints1"], pred["mconf"] = (
pred["keypoints0"][keep],
pred["keypoints1"][keep],
scores,
)
return pred
|