Spaces:
Sleeping
Sleeping
File size: 4,921 Bytes
9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import cv2
import logging
import numpy as np
from hloc.utils.read_write_model import (
read_cameras_binary,
read_images_binary,
read_model,
write_model,
qvec2rotmat,
read_images_text,
read_cameras_text,
)
logger = logging.getLogger(__name__)
def scale_sfm_images(full_model, scaled_model, image_dir):
"""Duplicate the provided model and scale the camera intrinsics so that
they match the original image resolution - makes everything easier.
"""
logger.info("Scaling the COLMAP model to the original image size.")
scaled_model.mkdir(exist_ok=True)
cameras, images, points3D = read_model(full_model)
scaled_cameras = {}
for id_, image in images.items():
name = image.name
img = cv2.imread(str(image_dir / name))
assert img is not None, image_dir / name
h, w = img.shape[:2]
cam_id = image.camera_id
if cam_id in scaled_cameras:
assert scaled_cameras[cam_id].width == w
assert scaled_cameras[cam_id].height == h
continue
camera = cameras[cam_id]
assert camera.model == "SIMPLE_RADIAL"
sx = w / camera.width
sy = h / camera.height
assert sx == sy, (sx, sy)
scaled_cameras[cam_id] = camera._replace(
width=w, height=h, params=camera.params * np.array([sx, sx, sy, 1.0])
)
write_model(scaled_cameras, images, points3D, scaled_model)
def create_query_list_with_intrinsics(
model, out, list_file=None, ext=".bin", image_dir=None
):
"""Create a list of query images with intrinsics from the colmap model."""
if ext == ".bin":
images = read_images_binary(model / "images.bin")
cameras = read_cameras_binary(model / "cameras.bin")
else:
images = read_images_text(model / "images.txt")
cameras = read_cameras_text(model / "cameras.txt")
name2id = {image.name: i for i, image in images.items()}
if list_file is None:
names = list(name2id)
else:
with open(list_file, "r") as f:
names = f.read().rstrip().split("\n")
data = []
for name in names:
image = images[name2id[name]]
camera = cameras[image.camera_id]
w, h, params = camera.width, camera.height, camera.params
if image_dir is not None:
# Check the original image size and rescale the camera intrinsics
img = cv2.imread(str(image_dir / name))
assert img is not None, image_dir / name
h_orig, w_orig = img.shape[:2]
assert camera.model == "SIMPLE_RADIAL"
sx = w_orig / w
sy = h_orig / h
assert sx == sy, (sx, sy)
w, h = w_orig, h_orig
params = params * np.array([sx, sx, sy, 1.0])
p = [name, camera.model, w, h] + params.tolist()
data.append(" ".join(map(str, p)))
with open(out, "w") as f:
f.write("\n".join(data))
def evaluate(model, results, list_file=None, ext=".bin", only_localized=False):
predictions = {}
with open(results, "r") as f:
for data in f.read().rstrip().split("\n"):
data = data.split()
name = data[0]
q, t = np.split(np.array(data[1:], float), [4])
predictions[name] = (qvec2rotmat(q), t)
if ext == ".bin":
images = read_images_binary(model / "images.bin")
else:
images = read_images_text(model / "images.txt")
name2id = {image.name: i for i, image in images.items()}
if list_file is None:
test_names = list(name2id)
else:
with open(list_file, "r") as f:
test_names = f.read().rstrip().split("\n")
errors_t = []
errors_R = []
for name in test_names:
if name not in predictions:
if only_localized:
continue
e_t = np.inf
e_R = 180.0
else:
image = images[name2id[name]]
R_gt, t_gt = image.qvec2rotmat(), image.tvec
R, t = predictions[name]
e_t = np.linalg.norm(-R_gt.T @ t_gt + R.T @ t, axis=0)
cos = np.clip((np.trace(np.dot(R_gt.T, R)) - 1) / 2, -1.0, 1.0)
e_R = np.rad2deg(np.abs(np.arccos(cos)))
errors_t.append(e_t)
errors_R.append(e_R)
errors_t = np.array(errors_t)
errors_R = np.array(errors_R)
med_t = np.median(errors_t)
med_R = np.median(errors_R)
out = f"Results for file {results.name}:"
out += f"\nMedian errors: {med_t:.3f}m, {med_R:.3f}deg"
out += "\nPercentage of test images localized within:"
threshs_t = [0.01, 0.02, 0.03, 0.05, 0.25, 0.5, 5.0]
threshs_R = [1.0, 2.0, 3.0, 5.0, 2.0, 5.0, 10.0]
for th_t, th_R in zip(threshs_t, threshs_R):
ratio = np.mean((errors_t < th_t) & (errors_R < th_R))
out += f"\n\t{th_t*100:.0f}cm, {th_R:.0f}deg : {ratio*100:.2f}%"
logger.info(out)
|