Spaces:
Sleeping
Sleeping
import sys | |
from pathlib import Path | |
import torch | |
from hloc import logger | |
from ..utils.base_model import BaseModel | |
lib_path = Path(__file__).parent / "../../third_party" | |
sys.path.append(str(lib_path)) | |
from lanet.network_v0.model import PointModel | |
lanet_path = Path(__file__).parent / "../../third_party/lanet" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class LANet(BaseModel): | |
default_conf = { | |
"model_name": "v0", | |
"keypoint_threshold": 0.1, | |
"max_keypoints": 1024, | |
} | |
required_inputs = ["image"] | |
def _init(self, conf): | |
model_path = ( | |
lanet_path / "checkpoints" / f'PointModel_{conf["model_name"]}.pth' | |
) | |
if not model_path.exists(): | |
logger.warning(f"No model found at {model_path}, start downloading") | |
self.net = PointModel(is_test=True) | |
state_dict = torch.load(model_path, map_location="cpu") | |
self.net.load_state_dict(state_dict["model_state"]) | |
logger.info("Load LANet model done.") | |
def _forward(self, data): | |
image = data["image"] | |
keypoints, scores, descriptors = self.net(image) | |
_, _, Hc, Wc = descriptors.shape | |
# Scores & Descriptors | |
kpts_score = torch.cat([keypoints, scores], dim=1).view(3, -1).t() | |
descriptors = descriptors.view(256, Hc, Wc).view(256, -1).t() | |
# Filter based on confidence threshold | |
descriptors = descriptors[ | |
kpts_score[:, 0] > self.conf["keypoint_threshold"], : | |
] | |
kpts_score = kpts_score[ | |
kpts_score[:, 0] > self.conf["keypoint_threshold"], : | |
] | |
keypoints = kpts_score[:, 1:] | |
scores = kpts_score[:, 0] | |
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] | |
keypoints = keypoints[idxs, :2] | |
descriptors = descriptors[idxs] | |
scores = scores[idxs] | |
return { | |
"keypoints": keypoints[None], | |
"scores": scores[None], | |
"descriptors": descriptors.T[None], | |
} | |