Spaces:
Sleeping
Sleeping
import sys | |
import torch | |
from ..utils.base_model import BaseModel | |
from ..utils import do_system | |
from pathlib import Path | |
import subprocess | |
from .. import logger | |
sys.path.append(str(Path(__file__).parent / "../../third_party")) | |
from ASpanFormer.src.ASpanFormer.aspanformer import ASpanFormer as _ASpanFormer | |
from ASpanFormer.src.config.default import get_cfg_defaults | |
from ASpanFormer.src.utils.misc import lower_config | |
from ASpanFormer.demo import demo_utils | |
aspanformer_path = Path(__file__).parent / "../../third_party/ASpanFormer" | |
class ASpanFormer(BaseModel): | |
default_conf = { | |
"weights": "outdoor", | |
"match_threshold": 0.2, | |
"sinkhorn_iterations": 20, | |
"max_keypoints": 2048, | |
"config_path": aspanformer_path / "configs/aspan/outdoor/aspan_test.py", | |
"model_name": "weights_aspanformer.tar", | |
} | |
required_inputs = ["image0", "image1"] | |
proxy = "http://localhost:1080" | |
aspanformer_models = { | |
"weights_aspanformer.tar": "https://drive.google.com/uc?id=1eavM9dTkw9nbc-JqlVVfGPU5UvTTfc6k&confirm=t" | |
} | |
def _init(self, conf): | |
model_path = ( | |
aspanformer_path / "weights" / Path(conf["weights"] + ".ckpt") | |
) | |
# Download the model. | |
if not model_path.exists(): | |
# model_path.parent.mkdir(exist_ok=True) | |
tar_path = aspanformer_path / conf["model_name"] | |
if not tar_path.exists(): | |
link = self.aspanformer_models[conf["model_name"]] | |
cmd = [ | |
"gdown", | |
link, | |
"-O", | |
str(tar_path), | |
"--proxy", | |
self.proxy, | |
] | |
cmd_wo_proxy = ["gdown", link, "-O", str(tar_path)] | |
logger.info( | |
f"Downloading the Aspanformer model with `{cmd_wo_proxy}`." | |
) | |
try: | |
subprocess.run(cmd_wo_proxy, check=True) | |
except subprocess.CalledProcessError as e: | |
logger.info( | |
f"Downloading the Aspanformer model with `{cmd}`." | |
) | |
try: | |
subprocess.run(cmd, check=True) | |
except subprocess.CalledProcessError as e: | |
logger.error( | |
f"Failed to download the Aspanformer model." | |
) | |
raise e | |
do_system(f"cd {str(aspanformer_path)} & tar -xvf {str(tar_path)}") | |
config = get_cfg_defaults() | |
config.merge_from_file(conf["config_path"]) | |
_config = lower_config(config) | |
# update: match threshold | |
_config["aspan"]["match_coarse"]["thr"] = conf["match_threshold"] | |
_config["aspan"]["match_coarse"]["skh_iters"] = conf[ | |
"sinkhorn_iterations" | |
] | |
self.net = _ASpanFormer(config=_config["aspan"]) | |
weight_path = model_path | |
state_dict = torch.load(str(weight_path), map_location="cpu")[ | |
"state_dict" | |
] | |
self.net.load_state_dict(state_dict, strict=False) | |
logger.info(f"Loaded Aspanformer model") | |
def _forward(self, data): | |
data_ = { | |
"image0": data["image0"], | |
"image1": data["image1"], | |
} | |
self.net(data_, online_resize=True) | |
pred = { | |
"keypoints0": data_["mkpts0_f"], | |
"keypoints1": data_["mkpts1_f"], | |
"mconf": data_["mconf"], | |
} | |
scores = data_["mconf"] | |
top_k = self.conf["max_keypoints"] | |
if top_k is not None and len(scores) > top_k: | |
keep = torch.argsort(scores, descending=True)[:top_k] | |
scores = scores[keep] | |
pred["keypoints0"], pred["keypoints1"], pred["mconf"] = ( | |
pred["keypoints0"][keep], | |
pred["keypoints1"][keep], | |
scores, | |
) | |
return pred | |