Realcat
update: config
7419d98
raw
history blame
19.5 kB
import argparse
import numpy as np
import gradio as gr
from pathlib import Path
from typing import Dict, Any, Optional, Tuple, List, Union
from common.utils import (
ransac_zoo,
generate_warp_images,
load_config,
get_matcher_zoo,
run_matching,
run_ransac,
gen_examples,
GRADIO_VERSION,
)
DESCRIPTION = """
# Image Matching WebUI
This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue!
<br/>
🔎 For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui
🚀 All algorithms run on CPU for inference, causing slow speeds and high latency. For faster inference, please download the [source code](https://github.com/Vincentqyw/image-matching-webui) for local deployment.
🐛 Your feedback is valuable to me. Please do not hesitate to report any bugs [here](https://github.com/Vincentqyw/image-matching-webui/issues).
"""
class ImageMatchingApp:
def __init__(self, server_name="0.0.0.0", server_port=7860, **kwargs):
self.server_name = server_name
self.server_port = server_port
self.config_path = kwargs.get(
"config", Path(__file__).parent / "config.yaml"
)
self.cfg = load_config(self.config_path)
self.matcher_zoo = get_matcher_zoo(self.cfg["matcher_zoo"])
self.app = None
self.init_interface()
# print all the keys
def init_matcher_dropdown(self):
algos = []
for k, v in self.cfg["matcher_zoo"].items():
if v.get("enable", True):
algos.append(k)
return algos
def init_interface(self):
with gr.Blocks() as self.app:
with gr.Row():
with gr.Column(scale=1):
gr.Image(
str(Path(__file__).parent.parent / "assets/logo.webp"),
elem_id="logo-img",
show_label=False,
show_share_button=False,
show_download_button=False,
)
with gr.Column(scale=3):
gr.Markdown(DESCRIPTION)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
matcher_list = gr.Dropdown(
choices=self.init_matcher_dropdown(),
value="disk+lightglue",
label="Matching Model",
interactive=True,
)
match_image_src = gr.Radio(
(
["upload", "webcam", "clipboard"]
if GRADIO_VERSION > "3"
else ["upload", "webcam", "canvas"]
),
label="Image Source",
value="upload",
)
with gr.Row():
input_image0 = gr.Image(
label="Image 0",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
input_image1 = gr.Image(
label="Image 1",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
with gr.Row():
button_reset = gr.Button(value="Reset")
button_run = gr.Button(
value="Run Match", variant="primary"
)
with gr.Accordion("Advanced Setting", open=False):
with gr.Accordion("Matching Setting", open=True):
with gr.Row():
match_setting_threshold = gr.Slider(
minimum=0.0,
maximum=1,
step=0.001,
label="Match thres.",
value=0.1,
)
match_setting_max_features = gr.Slider(
minimum=10,
maximum=10000,
step=10,
label="Max features",
value=1000,
)
# TODO: add line settings
with gr.Row():
detect_keypoints_threshold = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
label="Keypoint thres.",
value=0.015,
)
detect_line_threshold = gr.Slider(
minimum=0.1,
maximum=1,
step=0.01,
label="Line thres.",
value=0.2,
)
# matcher_lists = gr.Radio(
# ["NN-mutual", "Dual-Softmax"],
# label="Matcher mode",
# value="NN-mutual",
# )
with gr.Accordion("RANSAC Setting", open=True):
with gr.Row(equal_height=False):
ransac_method = gr.Dropdown(
choices=ransac_zoo.keys(),
value=self.cfg["defaults"]["ransac_method"],
label="RANSAC Method",
interactive=True,
)
ransac_reproj_threshold = gr.Slider(
minimum=0.0,
maximum=12,
step=0.01,
label="Ransac Reproj threshold",
value=8.0,
)
ransac_confidence = gr.Slider(
minimum=0.0,
maximum=1,
step=0.00001,
label="Ransac Confidence",
value=self.cfg["defaults"]["ransac_confidence"],
)
ransac_max_iter = gr.Slider(
minimum=0.0,
maximum=100000,
step=100,
label="Ransac Iterations",
value=self.cfg["defaults"]["ransac_max_iter"],
)
button_ransac = gr.Button(
value="Rerun RANSAC", variant="primary"
)
with gr.Accordion("Geometry Setting", open=False):
with gr.Row(equal_height=False):
choice_geometry_type = gr.Radio(
["Fundamental", "Homography"],
label="Reconstruct Geometry",
value=self.cfg["defaults"][
"setting_geometry"
],
)
# collect inputs
state_cache = gr.State({})
inputs = [
input_image0,
input_image1,
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
matcher_list,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
choice_geometry_type,
gr.State(self.matcher_zoo),
# state_cache,
]
# Add some examples
with gr.Row():
# Example inputs
gr.Examples(
examples=gen_examples(),
inputs=inputs,
outputs=[],
fn=run_matching,
cache_examples=False,
label=(
"Examples (click one of the images below to Run"
" Match). Thx: WxBS"
),
)
with gr.Accordion("Supported Algorithms", open=False):
# add a table of supported algorithms
self.display_supported_algorithms()
with gr.Column():
output_keypoints = gr.Image(label="Keypoints", type="numpy")
output_matches_raw = gr.Image(
label="Raw Matches",
type="numpy",
)
output_matches_ransac = gr.Image(
label="Ransac Matches", type="numpy"
)
with gr.Accordion(
"Open for More: Matches Statistics", open=False
):
matches_result_info = gr.JSON(
label="Matches Statistics"
)
matcher_info = gr.JSON(label="Match info")
with gr.Accordion(
"Open for More: Warped Image", open=False
):
output_wrapped = gr.Image(
label="Wrapped Pair", type="numpy"
)
with gr.Accordion(
"Open for More: Geometry info", open=False
):
geometry_result = gr.JSON(
label="Reconstructed Geometry"
)
# callbacks
match_image_src.change(
fn=self.ui_change_imagebox,
inputs=match_image_src,
outputs=input_image0,
)
match_image_src.change(
fn=self.ui_change_imagebox,
inputs=match_image_src,
outputs=input_image1,
)
# collect outputs
outputs = [
output_keypoints,
output_matches_raw,
output_matches_ransac,
matches_result_info,
matcher_info,
geometry_result,
output_wrapped,
state_cache,
]
# button callbacks
button_run.click(
fn=run_matching, inputs=inputs, outputs=outputs
)
# Reset images
reset_outputs = [
input_image0,
input_image1,
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
matcher_list,
input_image0,
input_image1,
match_image_src,
output_keypoints,
output_matches_raw,
output_matches_ransac,
matches_result_info,
matcher_info,
output_wrapped,
geometry_result,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
choice_geometry_type,
]
button_reset.click(
fn=self.ui_reset_state, inputs=None, outputs=reset_outputs
)
# run ransac button action
button_ransac.click(
fn=run_ransac,
inputs=[
state_cache,
choice_geometry_type,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
],
outputs=[
output_matches_ransac,
matches_result_info,
output_wrapped,
],
)
# estimate geo
choice_geometry_type.change(
fn=generate_warp_images,
inputs=[
input_image0,
input_image1,
geometry_result,
choice_geometry_type,
],
outputs=[output_wrapped, geometry_result],
)
def run(self):
self.app.queue().launch(
server_name=self.server_name,
server_port=self.server_port,
share=False,
)
def ui_change_imagebox(self, choice):
"""
Updates the image box with the given choice.
Args:
choice (list): The list of image sources to be displayed in the image box.
Returns:
dict: A dictionary containing the updated value, sources, and type for the image box.
"""
ret_dict = {
"value": None, # The updated value of the image box
"__type__": "update", # The type of update for the image box
}
if GRADIO_VERSION > "3":
return {
**ret_dict,
"sources": choice, # The list of image sources to be displayed
}
else:
return {
**ret_dict,
"source": choice, # The list of image sources to be displayed
}
def ui_reset_state(
self,
*args: Any,
) -> Tuple[
Optional[np.ndarray],
Optional[np.ndarray],
float,
int,
float,
str,
Dict[str, Any],
Dict[str, Any],
str,
Optional[np.ndarray],
Optional[np.ndarray],
Optional[np.ndarray],
Dict[str, Any],
Dict[str, Any],
Optional[np.ndarray],
Dict[str, Any],
str,
int,
float,
int,
]:
"""
Reset the state of the UI.
Returns:
tuple: A tuple containing the initial values for the UI state.
"""
key: str = list(self.matcher_zoo.keys())[
0
] # Get the first key from matcher_zoo
return (
None, # image0: Optional[np.ndarray]
None, # image1: Optional[np.ndarray]
self.cfg["defaults"][
"match_threshold"
], # matching_threshold: float
self.cfg["defaults"]["max_keypoints"], # max_features: int
self.cfg["defaults"][
"keypoint_threshold"
], # keypoint_threshold: float
key, # matcher: str
self.ui_change_imagebox("upload"), # input image0: Dict[str, Any]
self.ui_change_imagebox("upload"), # input image1: Dict[str, Any]
"upload", # match_image_src: str
None, # keypoints: Optional[np.ndarray]
None, # raw matches: Optional[np.ndarray]
None, # ransac matches: Optional[np.ndarray]
{}, # matches result info: Dict[str, Any]
{}, # matcher config: Dict[str, Any]
None, # warped image: Optional[np.ndarray]
{}, # geometry result: Dict[str, Any]
self.cfg["defaults"]["ransac_method"], # ransac_method: str
self.cfg["defaults"][
"ransac_reproj_threshold"
], # ransac_reproj_threshold: float
self.cfg["defaults"][
"ransac_confidence"
], # ransac_confidence: float
self.cfg["defaults"]["ransac_max_iter"], # ransac_max_iter: int
self.cfg["defaults"]["setting_geometry"], # geometry: str
)
def display_supported_algorithms(self, style="tab"):
def get_link(link, tag="Link"):
return "[{}]({})".format(tag, link) if link is not None else "None"
data = []
cfg = self.cfg["matcher_zoo"]
if style == "md":
markdown_table = "| Algo. | Conference | Code | Project | Paper |\n"
markdown_table += (
"| ----- | ---------- | ---- | ------- | ----- |\n"
)
for k, v in cfg.items():
if not v["info"]["display"]:
continue
github_link = get_link(v["info"]["github"])
project_link = get_link(v["info"]["project"])
paper_link = get_link(
v["info"]["paper"],
(
Path(v["info"]["paper"]).name[-10:]
if v["info"]["paper"] is not None
else "Link"
),
)
markdown_table += "{}|{}|{}|{}|{}\n".format(
v["info"]["name"], # display name
v["info"]["source"],
github_link,
project_link,
paper_link,
)
return gr.Markdown(markdown_table)
elif style == "tab":
for k, v in cfg.items():
if not v["info"].get("display", True):
continue
data.append(
[
v["info"]["name"],
v["info"]["source"],
v["info"]["github"],
v["info"]["paper"],
v["info"]["project"],
]
)
tab = gr.Dataframe(
headers=["Algo.", "Conference", "Code", "Paper", "Project"],
datatype=["str", "str", "str", "str", "str"],
col_count=(5, "fixed"),
value=data,
# wrap=True,
# min_width = 1000,
# height=1000,
)
return tab