Spaces:
Sleeping
Sleeping
# COTR: Correspondence Transformer for Matching Across Images (ICCV 2021) | |
This repository is a reference implementation for COTR. | |
COTR establishes correspondence in a functional and end-to-end fashion. It solves dense and sparse correspondence problem in the same framework. | |
[[arXiv]](https://arxiv.org/abs/2103.14167), [[video]](https://jiangwei221.github.io/vids/cotr/README.html), [[presentation]](https://youtu.be/bOZ12kgfn3E), [[pretrained_weights]](https://www.cs.ubc.ca/research/kmyi_data/files/2021/cotr/default.zip), [[distance_matrix]](https://www.cs.ubc.ca/research/kmyi_data/files/2021/cotr/MegaDepth_v1.zip) | |
## Training | |
### 1. Prepare data | |
See `prepare_data.md`. | |
### 2. Setup configuration json | |
Add an entry inside `COTR/global_configs/dataset_config.json`, make sure it is correct on your system. In the provided `dataset_config.json`, we have different configurations for different clusters. | |
Explanations on some json parameters: | |
`valid_list_json`: The valid list json file, see `2. Valid list` in `Scripts to generate dataset`. | |
`train_json/val_json/test_json`: The splits json files, see `3. Train/val/test split` in `Scripts to generate dataset`. | |
`scene_dir`: Path to Megadepth SfM folder(rectified ones!). `{0}{1}` are scene and sequence id used by f-string. | |
`image_dir/depth_dir`: Path to images and depth maps of Megadepth. | |
### 3. Example command | |
```python train_cotr.py --scene_file sample_data/jsons/debug_megadepth.json --dataset_name=megadepth --info_level=rgbd --use_ram=no --batch_size=2 --lr_backbone=1e-4 --max_iter=200 --valid_iter=10 --workers=4 --confirm=no``` | |
**Important arguments:** | |
`use_ram`: Set to "yes" to load data into main memory. | |
`crop_cam`: How to crop the image, it will change the camera intrinsic accordingly. | |
`scene_file`: The sequence control file. | |
`suffix`: Give the model a unique suffix. | |
`load_weights`: Load a pretrained weights, only need the model name, it will automatically find the folder with the same name under the output folder, and load the "checkpoint.pth.tar". | |
### 4. Our training commands | |
As stated in the paper, we have 3 training stages. The machine we used has 1 RTX 3090, i7-10700, and 128G RAM. We store the training data inside the main memory during the first two stages. | |
Stage 1: `python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=yes --use_cc=no --batch_size=24 --learning_rate=1e-4 --lr_backbone=0 --max_iter=300000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_1 --valid_iter=1000 --enable_zoom=no --crop_cam=crop_center_and_resize --out_dir=./out/cotr` | |
Stage 2: `python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=yes --use_cc=no --batch_size=16 --learning_rate=1e-4 --lr_backbone=1e-5 --max_iter=2000000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_2 --valid_iter=10000 --enable_zoom=no --crop_cam=crop_center_and_resize --out_dir=./out/cotr --load_weights=model:cotr_resnet50_layer3_1024_dset:megadepth_sushi_bs:24_pe:lin_sine_lrbackbone:0.0_suffix:stage_1` | |
Stage 3: `python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=no --use_cc=no --batch_size=16 --learning_rate=1e-4 --lr_backbone=1e-5 --max_iter=300000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_3 --valid_iter=2000 --enable_zoom=yes --crop_cam=no_crop --out_dir=./out/cotr --load_weights=model:cotr_resnet50_layer3_1024_dset:megadepth_sushi_bs:16_pe:lin_sine_lrbackbone:1e-05_suffix:stage_2` | |
<p align="center"> | |
<img src="./sample_data/imgs/loss_curves.png" height="200"> | |
</p> | |
## Demos | |
Check out our demo video at [here](https://jiangwei221.github.io/vids/cotr/README.html). | |
### 1. Install environment | |
Our implementation is based on PyTorch. Install the conda environment by: `conda env create -f environment.yml`. | |
Activate the environment by: `conda activate cotr_env`. | |
### 2. Download the pretrained weights | |
Download the pretrained weights at [here](https://www.cs.ubc.ca/research/kmyi_data/files/2021/cotr/default.zip). Extract in to `./out`, such that the weights file is at `/out/default/checkpoint.pth.tar`. | |
### 3. Single image pair demo | |
```python demo_single_pair.py --load_weights="default"``` | |
Example sparse output: | |
<p align="center"> | |
<img src="./sample_data/imgs/sparse_output.png" height="400"> | |
</p> | |
Example dense output with triangulation: | |
<p align="center"> | |
<img src="./sample_data/imgs/dense_output.png" height="200"> | |
</p> | |
**Note:** This example uses 10K valid sparse correspondences to densify. | |
### 4. Facial landmarks demo | |
`python demo_face.py --load_weights="default"` | |
Example: | |
<p align="center"> | |
<img src="./sample_data/imgs/face_output.png" height="200"> | |
</p> | |
### 5. Homography demo | |
`python demo_homography.py --load_weights="default"` | |
<p align="center"> | |
<img src="./sample_data/imgs/paint_output.png" height="300"> | |
</p> | |
### 6. Guided matching demo | |
`python demo_guided_matching.py --load_weights="default"` | |
<p align="center"> | |
<img src="./sample_data/imgs/guided_matching_output.png" height="400"> | |
</p> | |
### 7. Two view reconstruction demo | |
Note: this demo uses both known camera intrinsic and extrinsic. | |
`python demo_reconstruction.py --load_weights="default" --max_corrs=2048 --faster_infer=yes` | |
<p align="center"> | |
<img src="./sample_data/imgs/recon_output.png" height="250"> | |
</p> | |
### 8. Annotation suggestions | |
If the annotator knows the scale difference of two buildings, then COTR can skip the scale estimation step. | |
`python demo_wbs.py --load_weights="default"` | |
<p align="center"> | |
<img src="./sample_data/imgs/annotation_output.png" height="250"> | |
</p> | |
## Faster Inference | |
We added a faster inference engine. | |
The idea is that for each network invocation, we want to solve more queries. We search for nearby queries and group them on the fly. | |
*Note: Faster inference engine has slightly worse spatial accuracy.* | |
Guided matching demo now supports faster inference. | |
The time consumption for default inference engine is ~216s, and the time consumption for faster inference engine is ~79s, on 1080Ti. | |
Try `python demo_guided_matching.py --load_weights="default" --faster_infer=yes`. | |
## Citation | |
If you use this code in your research, please cite our paper: | |
``` | |
@inproceedings{jiang2021cotr, | |
title={{COTR: Correspondence Transformer for Matching Across Images}}, | |
author={Wei Jiang and Eduard Trulls and Jan Hosang and Andrea Tagliasacchi and Kwang Moo Yi}, | |
booktitle=ICCV, | |
year={2021} | |
} | |
``` | |