Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import torch.nn as nn
|
@@ -6,11 +7,13 @@ import timm
|
|
6 |
import numpy as np
|
7 |
import cv2
|
8 |
from PIL import Image
|
9 |
-
import io
|
10 |
import warnings
|
11 |
|
12 |
warnings.filterwarnings("ignore")
|
13 |
|
|
|
|
|
|
|
14 |
# Define the model class
|
15 |
class MobileViTSegmentation(nn.Module):
|
16 |
def __init__(self, encoder_name='mobilevit_s', pretrained=False):
|
@@ -34,53 +37,70 @@ class MobileViTSegmentation(nn.Module):
|
|
34 |
out = nn.functional.interpolate(out, size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=False)
|
35 |
return out
|
36 |
|
37 |
-
# Load model function
|
38 |
@st.cache_resource
|
39 |
def load_model():
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
# Inference
|
46 |
def predict_mask(image, model, threshold=0.7):
|
47 |
-
|
48 |
-
transforms.
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Overlay mask on image
|
59 |
def overlay_mask(image, mask, color=(0, 0, 255), alpha=0.4):
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Streamlit UI
|
|
|
69 |
st.title("🦷 Tooth Segmentation from Mouth Images")
|
70 |
-
st.markdown("Upload a face or mouth image and
|
71 |
|
72 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
73 |
|
74 |
if uploaded_file:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
overlayed_img = overlay_mask(image, pred_mask, color=(0, 0, 255), alpha=0.4)
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
st.image(image, caption="Original Image", use_container_width=True)
|
84 |
-
with col2:
|
85 |
-
st.image(overlayed_img, caption="Tooth Mask Overlay", use_container_width=True)
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
import torch.nn as nn
|
|
|
7 |
import numpy as np
|
8 |
import cv2
|
9 |
from PIL import Image
|
|
|
10 |
import warnings
|
11 |
|
12 |
warnings.filterwarnings("ignore")
|
13 |
|
14 |
+
# Optional: Turn off file watchers in HF Spaces to avoid torch-related warnings
|
15 |
+
os.environ["STREAMLIT_WATCHER_TYPE"] = "none"
|
16 |
+
|
17 |
# Define the model class
|
18 |
class MobileViTSegmentation(nn.Module):
|
19 |
def __init__(self, encoder_name='mobilevit_s', pretrained=False):
|
|
|
37 |
out = nn.functional.interpolate(out, size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=False)
|
38 |
return out
|
39 |
|
40 |
+
# Load model function with spinner and error handling
|
41 |
@st.cache_resource
|
42 |
def load_model():
|
43 |
+
try:
|
44 |
+
with st.spinner("Loading model..."):
|
45 |
+
model = MobileViTSegmentation()
|
46 |
+
model.load_state_dict(torch.load("mobilevit_teeth_segmentation.pth", map_location="cpu"))
|
47 |
+
model.eval()
|
48 |
+
return model
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"❌ Failed to load model: {e}")
|
51 |
+
st.stop()
|
52 |
|
53 |
+
# Inference function
|
54 |
def predict_mask(image, model, threshold=0.7):
|
55 |
+
try:
|
56 |
+
transform = transforms.Compose([
|
57 |
+
transforms.Resize((256, 256)),
|
58 |
+
transforms.ToTensor()
|
59 |
+
])
|
60 |
+
img_tensor = transform(image).unsqueeze(0)
|
61 |
+
with torch.no_grad():
|
62 |
+
pred = model(img_tensor)
|
63 |
+
pred_mask = pred.squeeze().numpy()
|
64 |
+
pred_mask = (pred_mask > threshold).astype(np.uint8)
|
65 |
+
return pred_mask
|
66 |
+
except Exception as e:
|
67 |
+
st.error(f"❌ Prediction failed: {e}")
|
68 |
+
return None
|
69 |
|
70 |
# Overlay mask on image
|
71 |
def overlay_mask(image, mask, color=(0, 0, 255), alpha=0.4):
|
72 |
+
try:
|
73 |
+
image_np = np.array(image.convert("RGB"))
|
74 |
+
mask_resized = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]))
|
75 |
+
color_mask = np.zeros_like(image_np)
|
76 |
+
color_mask[:, :] = color
|
77 |
+
overlay = np.where(mask_resized[..., None] == 1, color_mask, 0)
|
78 |
+
blended = cv2.addWeighted(image_np, 1 - alpha, overlay, alpha, 0)
|
79 |
+
return blended
|
80 |
+
except Exception as e:
|
81 |
+
st.error(f"❌ Mask overlay failed: {e}")
|
82 |
+
return np.array(image)
|
83 |
|
84 |
# Streamlit UI
|
85 |
+
st.set_page_config(page_title="Tooth Segmentation", layout="wide")
|
86 |
st.title("🦷 Tooth Segmentation from Mouth Images")
|
87 |
+
st.markdown("Upload a **face or mouth image**, and this app will overlay the **predicted tooth segmentation mask**.")
|
88 |
|
89 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
90 |
|
91 |
if uploaded_file:
|
92 |
+
try:
|
93 |
+
image = Image.open(uploaded_file).convert("RGB")
|
94 |
+
model = load_model()
|
95 |
+
pred_mask = predict_mask(image, model)
|
|
|
96 |
|
97 |
+
if pred_mask is not None:
|
98 |
+
overlayed_img = overlay_mask(image, pred_mask, color=(0, 0, 255), alpha=0.4)
|
|
|
|
|
|
|
99 |
|
100 |
+
col1, col2 = st.columns(2)
|
101 |
+
with col1:
|
102 |
+
st.image(image, caption="Original Image", use_container_width=True)
|
103 |
+
with col2:
|
104 |
+
st.image(overlayed_img, caption="Tooth Mask Overlay", use_container_width=True)
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"❌ Error processing image: {e}")
|