syedfaisalabrar's picture
Update app.py
e8b709f verified
raw
history blame
5.3 kB
import gradio as gr
import torch
import cv2
import os
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from decord import VideoReader, cpu
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from backPrompt import main as main_b
from frontPrompt import main as main_f
import sentencepiece as spm
model_path = "best.pt"
modelY = YOLO(model_path)
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
cache_folder = "./.cache"
path = "OpenGVLab/InternVL2_5-2B"
# Load the Hugging Face model and tokenizer globally (downloaded only once)
model = AutoModel.from_pretrained(
path,
cache_dir=cache_folder,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
# load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cpu()
tokenizer = AutoTokenizer.from_pretrained(
path,
cache_dir=cache_folder,
trust_remote_code=True,
use_fast=False
)
def preprocessing(image):
"""Apply three enhancement filters without resizing or cropping."""
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
image = Image.fromarray(np.array(image))
# Apply enhancements
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
# Convert to tensor without resizing
# image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 # Shape: [C, H, W]
return image
def imageRotation(image):
return image
def detect_document(image):
"""Detects front and back of the document using YOLO."""
image = ensure_numpy(image) # Ensure valid format
results = modelY(image, conf=0.85)
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = modelY.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf))
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image.astype(np.uint8)), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crops detected bounding boxes from the image safely."""
image = ensure_numpy(image) # Ensure image is NumPy format
cropped_images = {}
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
# Ensure the bounding box is within image bounds
x1, y1, x2, y2 = max(0, x1), max(0, y1), min(image.shape[1], x2), min(image.shape[0], y2)
cropped = image[y1:y2, x1:x2]
if cropped.size > 0: # Check if valid
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
def vision_ai_api(image, doc_type):
if doc_type == "front":
results = main_f(image,model,tokenizer)
if doc_type == "back":
results = main_b(image,model,tokenizer)
return results
def ensure_numpy(image):
"""Ensure image is a valid NumPy array."""
if isinstance(image, torch.Tensor):
# Convert PyTorch tensor to NumPy array
image = image.permute(1, 2, 0).cpu().numpy()
elif isinstance(image, Image.Image):
# Convert PIL image to NumPy array
image = np.array(image)
if len(image.shape) == 2:
# Convert grayscale to 3-channel image
image = np.stack([image] * 3, axis=-1)
# return image
return image.astype(np.uint8)
def predict(image):
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
processed_image = preprocessing(image) # Enhanced PIL image
rotated_image = ensure_numpy(processed_image) # Convert to NumPy
detected_image, labels, bounding_boxes = detect_document(rotated_image)
if not bounding_boxes:
return detected_image, labels, {"error": "No document detected!"}
cropped_images = crop_image(rotated_image, bounding_boxes)
# Call Vision AI separately for front and back if detected
front_result = back_result = None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {
"front": front_result,
"back": back_result
}
return detected_image, labels, api_results
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()