Spaces:
Sleeping
Sleeping
File size: 3,264 Bytes
747ca92 c56710c 747ca92 c56710c 0e47c11 747ca92 c56710c 747ca92 f2d10dd e3cbdd0 747ca92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
from deepface import DeepFace
import cv2
import mediapipe as mp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import tempfile
# Initialize MediaPipe Pose for body bounding box detection
mp_pose = mp.solutions.pose
def analyze_images(img1, img2):
# Option 1: Convert PIL images to NumPy arrays
img1_array = np.array(img1)
img2_array = np.array(img2)
# Option 2: Save images temporarily as JPEG files
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file1:
img1.save(temp_file1, format='JPEG')
img1_path = temp_file1.name
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file2:
img2.save(temp_file2, format='JPEG')
img2_path = temp_file2.name
# Face comparison with DeepFace, enforce_detection set to False
face_result = DeepFace.verify(img1_path, img2_path, model_name='VGG-Face', enforce_detection=False)
is_same_person = face_result['verified']
similarity_score = face_result['distance']
# Convert images to OpenCV format
img1_cv = cv2.cvtColor(img1_array, cv2.COLOR_RGB2BGR)
img2_cv = cv2.cvtColor(img2_array, cv2.COLOR_RGB2BGR)
# Body analysis with MediaPipe
def get_body_info(image):
with mp_pose.Pose(static_image_mode=True) as pose:
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
# Calculate bounding box height and width
x_values = [landmark.x for landmark in landmarks]
y_values = [landmark.y for landmark in landmarks]
width = max(x_values) - min(x_values)
height = max(y_values) - min(y_values)
aspect_ratio = height / width if width > 0 else 0
return aspect_ratio, width, height
return None, None, None
aspect_ratio1, width1, height1 = get_body_info(img1_cv)
aspect_ratio2, width2, height2 = get_body_info(img2_cv)
# Create a chart to display face and body similarities
labels = ['Face Similarity', 'Body Aspect Ratio', 'Body Width', 'Body Height']
values1 = [similarity_score, aspect_ratio1, width1, height1]
values2 = [similarity_score, aspect_ratio2, width2, height2]
x = np.arange(len(labels))
width = 0.35
fig, ax = plt.subplots()
ax.bar(x - width/2, values1, width, label='Image 1')
ax.bar(x + width/2, values2, width, label='Image 2')
ax.set_ylabel('Scores')
ax.set_title('Comparison of Face and Body Features')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
# Save and return the chart
plt.tight_layout()
plt_path = "comparison_chart.png"
plt.savefig(plt_path)
plt.close(fig)
return is_same_person, plt_path
# Set up Gradio interface
iface = gr.Interface(
fn=analyze_images,
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
outputs = [gr.Textbox(label="Same Person?"), gr.Image(label="Comparison Chart")],
title="Face and Body Similarity Analyzer",
description="Upload two images to analyze if they contain the same person and compare body features."
)
iface.launch()
|