Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load Hugging Face Model | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("xsanskarx/calculator-smollm2_v2") | |
model = AutoModelForCausalLM.from_pretrained("xsanskarx/calculator-smollm2_v2") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
def calculate_expression(expression: str) -> str: | |
# Encode the user input and generate the result | |
input_ids = tokenizer.encode(expression, return_tensors="pt") | |
output_ids = model.generate(input_ids, max_new_tokens=50) | |
result = tokenizer.decode(output_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) | |
return result | |
# Streamlit Interface | |
st.title("AI-Powered Calculator") | |
st.write("Enter a mathematical expression, and let the model solve it.") | |
expression = st.text_input("Enter Expression (e.g., 5 + 3 * (2 - 1)):") | |
if st.button("Calculate"): | |
if expression.strip(): | |
try: | |
result = calculate_expression(expression) | |
st.success(f"Result: {result}") | |
except Exception as e: | |
st.error(f"Error: {str(e)}") | |
else: | |
st.warning("Please enter a valid expression.") | |