Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load the pre-trained model and tokenizer from Hugging Face | |
model_name = "tajuarAkash/test2" # Replace with your Hugging Face model path | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Title of the web app | |
st.title("Fraud Detection in Health Insurance Claims") | |
# Description of the app | |
st.write("This app predicts whether a health insurance claim is fraudulent based on the input data.") | |
# Create a text box for the user to input the generated sentence (feature for prediction) | |
input_text = st.text_area("Enter the claim description") | |
# Create a button to make predictions | |
if st.button('Predict Fraud'): | |
if input_text: | |
# Tokenize the input text | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
# Get model predictions | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
# Display the result | |
if predicted_class == 1: | |
st.write("This claim is predicted to be fraudulent.") | |
else: | |
st.write("This claim is predicted to be legitimate.") | |
else: | |
st.write("Please enter a claim description.") | |