File size: 15,908 Bytes
26364eb 264e65b 26364eb 264e65b 26364eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import streamlit as st
import numpy as np
import plotly.express as px
import cv2
from src.error_analysis import ErrorAnalysis, transform_gt_bbox_format
import yaml
import os
from src.confusion_matrix import ConfusionMatrix
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import pandas as pd
def amend_cm_df(cm_df, labels_dict):
"""Helper function to amend the index and column name for readability
Example - index currently is 0, 1 ... -> GT - person
Likewise in Column - 0, 1 ... -> Pred - person etc
Args:
cm_df (_type_): confusion matrix dataframe.
labels_dict (_type_): dictionary of the class labels
Returns:
cm_df: confusion matrix dataframe with index and column names filled
"""
index_list = list(labels_dict.values())
index_list.append("background")
cm_df = cm_df.set_axis([f"GT - {elem}" for elem in index_list])
cm_df = cm_df.set_axis([f"Pred - {elem}" for elem in index_list], axis=1)
cm_df = cm_df.astype(int)
return cm_df
def find_top_left_pos(mask):
"""gets the top left position of the mask
Args:
mask (_type_): _description_
Returns:
_type_: _description_
"""
return np.unravel_index(np.argmax(mask, axis=None), mask.shape)
class ImageTool:
def __init__(self, cfg_path="cfg/cfg.yml"):
# getting the config object
cfg_file = open(cfg_path)
self.cfg_obj = yaml.load(cfg_file, Loader=yaml.FullLoader)
# initialising the model and getting the annotations
self.ea_obj = ErrorAnalysis(cfg_path)
self.inference_folder = self.ea_obj.inference_folder
self.ea_obj.get_annots()
self.gt_annots = self.ea_obj.gt_dict
self.all_img = os.listdir(self.inference_folder)
self.ea_obj.model.score_threshold = self.cfg_obj["visual_tool"]["conf_threshold"]
self.ea_obj.model.iou_threshold = self.cfg_obj["visual_tool"]["iou_threshold"]
# for labels
self.labels_dict = self.cfg_obj["error_analysis"]["labels_dict"]
self.labels_dict = {v: k for k, v in self.labels_dict.items()}
self.inference_labels_dict = self.cfg_obj["error_analysis"]["inference_labels_dict"]
self.inference_labels_dict = {v: k for k, v in self.inference_labels_dict.items()}
self.idx_base = self.cfg_obj["error_analysis"]["idx_base"]
# for visualisation
self.bbox_thickness = self.cfg_obj["visual_tool"]["bbox_thickness"]
self.font_scale = self.cfg_obj["visual_tool"]["font_scale"]
self.font_thickness = self.cfg_obj["visual_tool"]["font_thickness"]
self.pred_colour = tuple(self.cfg_obj["visual_tool"]["pred_colour"])
self.gt_colour = tuple(self.cfg_obj["visual_tool"]["gt_colour"])
def show_img(self, img_fname="000000011149.jpg", show_preds=False, show_gt=False):
"""generate img with option to overlay with GT and/or preds
Args:
img_fname (str, optional): Filename of the image. Defaults to "000000011149.jpg".
show_preds (bool, optional): Toggle True to run model to get the preds. Defaults to False.
show_gt (bool, optional): Toggle True to get the GT labels/boxes. Defaults to False.
Returns:
fig (Plotly Figure): image with overlays if toggled True
cm_df (pd.DataFrame): confusion matrix of the pred versus GT
cm_tpfpfn_dict (Dict): confusion matrix dictionary of tp/fp/fn
"""
# get the image's file path. Concatenates with the folder in question
img = cv2.imread(f"{self.inference_folder}{img_fname}")
labels = {"x": "X", "y": "Y", "color": "Colour"}
if show_preds:
preds = self.get_preds(img_fname)
if self.ea_obj.task == "det":
img = self.draw_pred_bboxes(img, preds)
elif self.ea_obj.task == "seg":
img = self.draw_pred_masks(img, preds)
if show_gt:
gt_annots = self.get_gt_annot(img_fname)
if self.ea_obj.task == "det":
img = self.draw_gt_bboxes(img, preds)
elif self.ea_obj.task == "seg":
img = self.draw_gt_masks(img, gt_annots)
fig = px.imshow(img[..., ::-1], aspect="equal", labels=labels)
if show_gt and show_preds:
cm_df, cm_tpfpfn_dict = self.generate_cm_one_image(preds, gt_annots)
return [fig, cm_df, cm_tpfpfn_dict]
return fig
def show_img_sbs(self, img_fname="000000011149.jpg"):
"""generate two imageso with confusion matrix and tp/fp/fn. fig1 is image with GT overlay, while fig2 is the image witih pred overlay.
Args:
img_fname (str, optional): Filename of the image. Defaults to "000000011149.jpg".
Returns:
list: fig1 - imshow of image with GT overlay
fig2 - imshow of image with pred overlay
cm_df - confusion matrix dataframe
cm_tpfpfn_df - confusion matrix dictionary of tp/fp/fn
"""
# shows the image side by side
img = cv2.imread(f"{self.inference_folder}{img_fname}")
labels = {"x": "X", "y": "Y", "color": "Colour"}
img_pred = img.copy()
img_gt = img.copy()
preds = self.get_preds(img_fname)
gt_annots = self.get_gt_annot(img_fname)
if self.ea_obj.task == 'det':
img_pred = self.draw_pred_bboxes(img_pred, preds)
img_gt = self.draw_gt_bboxes(img_gt, gt_annots)
elif self.ea_obj.task == 'seg':
img_pred = self.draw_pred_masks(img_pred, preds)
img_gt = self.draw_gt_masks(img_gt, gt_annots)
fig1 = px.imshow(img_gt[..., ::-1], aspect="equal", labels=labels)
fig2 = px.imshow(img_pred[..., ::-1], aspect="equal", labels=labels)
fig2.update_yaxes(visible=False)
cm_df, cm_tpfpfn_df = self.generate_cm_one_image(preds, gt_annots)
return [fig1, fig2, cm_df, cm_tpfpfn_df]
def generate_cm_one_image(self, preds, gt_annots):
"""Generates confusion matrix between the inference and the Ground Truth of an image
Args:
preds (array): inference output of the model on the image
gt_annots (array): Ground Truth labels of the image
Returns:
cm_df (DataFrame): Confusion matrix dataframe.
cm_tpfpfn_df (DataFrame): TP/FP/FN dataframe
"""
num_classes = len(list(self.cfg_obj["error_analysis"]["labels_dict"].keys()))
idx_base = self.cfg_obj["error_analysis"]["idx_base"]
conf_threshold, iou_threshold = (
self.ea_obj.model.score_threshold,
self.ea_obj.model.iou_threshold,
)
cm = ConfusionMatrix(
num_classes=num_classes,
CONF_THRESHOLD=conf_threshold,
IOU_THRESHOLD=iou_threshold,
)
if self.ea_obj.task == 'det':
gt_annots[:, 0] -= idx_base
preds[:, -1] -= idx_base
elif self.ea_obj.task == 'seg':
gt_annots = [[gt[0] - idx_base, gt[1]] for gt in gt_annots]
cm.process_batch(preds, gt_annots, task = self.ea_obj.task)
confusion_matrix_df = cm.return_as_df()
cm.get_tpfpfn()
cm_tpfpfn_dict = {
"True Positive": cm.tp,
"False Positive": cm.fp,
"False Negative": cm.fn,
}
cm_tpfpfn_df = pd.DataFrame(cm_tpfpfn_dict, index=[0])
cm_tpfpfn_df = cm_tpfpfn_df.set_axis(["Values"], axis=0)
cm_tpfpfn_df = cm_tpfpfn_df.astype(int)
# amend df
confusion_matrix_df = amend_cm_df(confusion_matrix_df, self.labels_dict)
# print (cm.matrix)
return confusion_matrix_df, cm_tpfpfn_df
def get_preds(self, img_fname="000000011149.jpg"):
"""Using the model in the Error Analysis object, run inference to get outputs
Args:
img_fname (str): Image filename. Defaults to "000000011149.jpg".
Returns:
outputs (array): Inference output of the model on the image
"""
# run inference using the error analysis object per image
outputs, img_shape = self.ea_obj.generate_inference(img_fname)
if self.ea_obj.task == 'det':
# converts image coordinates from normalised to integer values
# image shape is [Y, X, C] (because Rows are Y)
# So don't get confused!
outputs[:, 0] *= img_shape[1]
outputs[:, 1] *= img_shape[0]
outputs[:, 2] *= img_shape[1]
outputs[:, 3] *= img_shape[0]
return outputs
def get_gt_annot(self, img_fname):
"""Retrieve the Ground Truth annotations of the image.
Args:
img_fname (_type_): Image filename
Returns:
grount_truth (array): GT labels of the image
"""
ground_truth = self.gt_annots[img_fname].copy()
img = cv2.imread(f"{self.inference_folder}{img_fname}")
# converts image coordinates from normalised to integer values
# image shape is [Y, X, C] (because Rows are Y)
# So don't get confused!
if self.ea_obj.task == 'det':
img_shape = img.shape
ground_truth = transform_gt_bbox_format(ground_truth, img_shape, format="coco")
ground_truth[:, 1] *= img_shape[1]
ground_truth[:, 2] *= img_shape[0]
ground_truth[:, 3] *= img_shape[1]
ground_truth[:, 4] *= img_shape[0]
return ground_truth
def draw_pred_masks(self, img_pred, inference_outputs):
"""Overlay mask onto img_pred
Args:
img_pred (_type_): _description_
preds (_type_): _description_
"""
pred_mask = sum([output[0] for output in inference_outputs])
pred_mask = np.where(pred_mask > 1, 1, pred_mask)
# mask_3d = np.stack((mask,mask,mask),axis=0)
# mask_3d = mask_3d.reshape(mask.shape[0], mask.shape[1], 3)
colour = np.array(self.pred_colour, dtype='uint8')
masked_img = np.where(pred_mask[...,None], colour, img_pred)
masked_img = masked_img.astype(np.uint8)
img_pred = cv2.addWeighted(img_pred, 0.7, masked_img, 0.3, 0)
def put_text_ina_mask(output, img):
coords = find_top_left_pos(output[0])
img = cv2.putText(img, self.inference_labels_dict[output[2]], (coords[1], coords[0] + 5), fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = self.font_scale,
color = self.pred_colour, thickness = self.font_thickness)
return img
for output in inference_outputs:
img_pred = put_text_ina_mask(output, img_pred)
return img_pred
def draw_gt_masks(self, img_gt, gt_outputs):
"""Overlay mask onto img_pred
Args:
img_pred (_type_): _description_
preds (_type_): _description_
"""
gt_mask = sum([output[1] for output in gt_outputs])
gt_mask = np.where(gt_mask > 1, 1, gt_mask)
# mask_3d = np.stack((mask,mask,mask),axis=0)
# mask_3d = mask_3d.reshape(mask.shape[0], mask.shape[1], 3)
colour = np.array(self.gt_colour, dtype='uint8')
masked_img = np.where(gt_mask[...,None], colour, img_gt)
def put_text_ina_mask(output, img):
coords = find_top_left_pos(output[1])
img = cv2.putText(img, self.labels_dict[output[0]], (coords[1], coords[0] + 5), fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = self.font_scale,
color = self.gt_colour, thickness = self.font_thickness)
return img
img_gt = cv2.addWeighted(img_gt, 0.7, masked_img, 0.3,0)
for output in gt_outputs:
img_gt = put_text_ina_mask(output, img_gt)
return img_gt
def draw_pred_bboxes(self, img_pred, preds):
"""Draws the preds onto the image
Args:
img_pred (array): image
preds (array): model inference outputs
Returns:
img_pred (array): image with outputs on overlay
"""
for pred in preds:
pred = pred.astype(int)
img_pred = cv2.rectangle(
img_pred,
(pred[0], pred[1]),
(pred[2], pred[3]),
color=self.pred_colour,
thickness=self.bbox_thickness,
)
img_pred = cv2.putText(
img_pred,
self.labels_dict[pred[5]],
(pred[0] + 5, pred[1] + 25),
color=self.pred_colour,
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=self.font_scale,
thickness=self.font_thickness,
)
return img_pred
def draw_gt_bboxes(self, img_gt, gt_annots, **kwargs):
"""Draws the GT onto the image
Args:
img_gt (array): image
gt_annots (array): GT labels
Returns:
img_gt (array): image with GT overlay
"""
for annot in gt_annots:
annot = annot.astype(int)
# print (annot)
img_gt = cv2.rectangle(
img_gt,
(annot[1], annot[2]),
(annot[3], annot[4]),
color=self.gt_colour,
thickness=self.bbox_thickness,
)
img_gt = cv2.putText(
img_gt,
self.labels_dict[annot[0]],
(annot[1] + 5, annot[2] + 25),
color=(0, 255, 0),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=self.font_scale,
thickness=self.font_thickness,
)
return img_gt
def plot_with_preds_gt(self, option, side_by_side=False, plot_type=None):
"""Rules on what plot to generate
Args:
option (_string_): image filename. Toggled on the app itself. See app.py
side_by_side (bool, optional): Whether to have two plots side by side.
Defaults to False.
plot_type (_type_, optional): "all" - both GT and pred will be plotted,
"pred" - only preds,
"GT" - only ground truth
None - only image generated
Will be overridden if side_by_side = True
Defaults to None.
"""
if plot_type == "all":
plot, df, cm_tpfpfn_df = self.show_img(
option, show_preds=True, show_gt=True
)
st.plotly_chart(plot, use_container_width=True)
st.caption("Blue: Model BBox, Green: GT BBox")
st.table(df)
st.table(cm_tpfpfn_df)
elif plot_type == "pred":
st.plotly_chart(
self.show_img(option, show_preds=True), use_container_width=True
)
elif plot_type == "gt":
st.plotly_chart(
self.show_img(option, show_gt=True), use_container_width=True
)
elif side_by_side:
plot1, plot2, df, cm_tpfpfn_df = self.show_img_sbs(option)
col1, col2 = st.columns(2)
with col1:
col1.subheader("Ground Truth")
st.plotly_chart(plot1, use_container_width=True)
with col2:
col2.subheader("Prediction")
st.plotly_chart(plot2, use_container_width=True)
st.table(df)
st.table(cm_tpfpfn_df)
else:
st.plotly_chart(self.show_img(option), use_container_width=True)
|