|
from peekingduck.pipeline.nodes.model import yolo as pkd_yolo |
|
import cv2 |
|
from collections import defaultdict |
|
import numpy as np |
|
import warnings |
|
warnings.simplefilter(action='ignore', category=FutureWarning) |
|
|
|
def convert_labels(inference_labels_dict, bbox_labels): |
|
for k, v in inference_labels_dict.items(): |
|
bbox_labels[bbox_labels == k] = v |
|
|
|
|
|
|
|
|
|
return bbox_labels |
|
|
|
def process_masks(inference_outputs, inference_labels_dict): |
|
|
|
mask_labels = convert_labels(inference_labels_dict, inference_outputs["bbox_labels"]) |
|
masks = inference_outputs["masks"] |
|
scores = inference_outputs['bbox_scores'] |
|
|
|
processed_output = [[masks[i], scores[i], int(mask_labels[i])] for i in range(len(scores))] |
|
|
|
return processed_output |
|
|
|
def process_bboxes(inference_outputs, inference_labels_dict): |
|
|
|
bbox_labels = inference_outputs["bbox_labels"] |
|
bbox_labels = convert_labels(inference_labels_dict, bbox_labels) |
|
bboxes = inference_outputs["bboxes"] |
|
bbox_scores = inference_outputs["bbox_scores"] |
|
|
|
|
|
|
|
|
|
stacked = np.stack((bbox_scores, bbox_labels), axis = 1) |
|
|
|
|
|
|
|
|
|
concated = np.concatenate((bboxes, stacked), axis = 1) |
|
|
|
return concated.astype(np.float32) |
|
|
|
def run_inference(img_matrix, model, inference_labels_dict = {'person': 1, 'bicycle': 2}, task = "det"): |
|
"""Helper function to run per image inference, get bbox, labels and scores and stack them for confusion matrix output |
|
|
|
Args: |
|
img_matrix (np.array): _description_ |
|
model: _description_ |
|
labels_dict (dict, optional): _description_. Defaults to {'person': 0, 'bicycle': 1}. |
|
|
|
Returns: |
|
concated (np.array): concatenated inference of n x (bbox (default is x1, y1, x2, y2), score, class) |
|
img_matrix.shape (np vector): vector with [Height * Weight * Dimension] values |
|
""" |
|
|
|
|
|
|
|
|
|
inference_inputs = {"img": img_matrix} |
|
inference_outputs = model.run(inference_inputs) |
|
|
|
|
|
|
|
if task == "seg": |
|
processed_output = process_masks(inference_outputs, inference_labels_dict) |
|
|
|
elif task == "det": |
|
processed_output = process_bboxes(inference_outputs, inference_labels_dict) |
|
|
|
return processed_output, img_matrix.shape |
|
|
|
class Inference: |
|
|
|
def __init__(self, model, cfg_obj): |
|
|
|
self.model = model |
|
self.labels_dict = cfg_obj['error_analysis']['labels_dict'] |
|
self.inference_labels_dict = cfg_obj['error_analysis']['inference_labels_dict'] |
|
self.task = cfg_obj['error_analysis']['task'] |
|
|
|
def run_inference_path(self, img_path): |
|
"""use if img_path is specified |
|
|
|
Args: |
|
img_path (_type_): _description_ |
|
|
|
Returns: |
|
_type_: _description_ |
|
""" |
|
image_orig = cv2.imread(img_path) |
|
image_orig = cv2.cvtColor(image_orig, cv2.COLOR_BGR2RGB) |
|
|
|
output = run_inference(image_orig, self.model, inference_labels_dict = self.inference_labels_dict, task = self.task) |
|
|
|
return output |
|
|
|
def run_inference_byte(self, img_bytes): |
|
"""use if the img_bytes is passed in instead of path |
|
|
|
Args: |
|
img_bytes (_type_): _description_ |
|
|
|
Returns: |
|
_type_: _description_ |
|
""" |
|
img_decoded = cv2.imdecode(np.frombuffer(img_bytes, np.uint8), -1) |
|
img_decoded = cv2.cvtColor(img_decoded, cv2.COLOR_BGR2RGB) |
|
|
|
output = run_inference(img_decoded, self.model, labels_dict = self.inference_labels_dict, task = self.task) |
|
|
|
return output |
|
|
|
if __name__ == "__main__": |
|
import yaml |
|
from src.error_analysis import load_model |
|
cfg_file = open("cfg/cfg.yml") |
|
cfg_obj = yaml.load(cfg_file, Loader=yaml.FullLoader) |
|
img_path = "./data/annotations_trainval2017/coco_person/000000576052.jpg" |
|
inference_obj = Inference(model = load_model(cfg_obj), cfg_obj = cfg_obj) |
|
output = inference_obj.run_inference_path(img_path) |
|
print (output) |