|
import gradio as gr |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
|
|
model_name = "Helsinki-NLP/opus-mt-en-ur" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
def translate_english_to_urdu(text): |
|
"""Translate input English text to Urdu.""" |
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) |
|
output_tokens = model.generate(**inputs) |
|
translated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True) |
|
return translated_text |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("<h1 align='center'>π English to Urdu Translator</h1>") |
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox(label="Enter English Text", placeholder="Type here...") |
|
output_text = gr.Textbox(label="Translated Urdu Text", interactive=False) |
|
|
|
translate_button = gr.Button("Translate") |
|
|
|
translate_button.click(translate_english_to_urdu, inputs=input_text, outputs=output_text) |
|
|
|
|
|
demo.launch() |
|
|