File size: 10,323 Bytes
1cc6224
 
 
 
b8e6954
1cc6224
b8e6954
 
f771594
b8e6954
1cc6224
b8e6954
 
46bf5eb
b8e6954
f771594
ff9d83f
b8e6954
 
f771594
 
 
 
 
b8e6954
f771594
 
 
 
1cc6224
 
f771594
 
 
1cc6224
f771594
 
b8e6954
f771594
b8e6954
f771594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e6954
f771594
 
 
 
 
 
 
 
b8e6954
f771594
 
 
 
 
 
 
 
 
 
 
 
 
b8e6954
b1ef128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e6954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc6224
f771594
 
 
1cc6224
f771594
b8e6954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc6224
b8e6954
f771594
1cc6224
b994ffa
f771594
1cc6224
 
141a5fb
 
 
7d198a1
c990a6c
7d198a1
1cc6224
b8e6954
f771594
1cc6224
f771594
1cc6224
 
f771594
1cc6224
 
9960694
d746470
1cc6224
 
b8e6954
f771594
b1ef128
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"
openai.api_key = os.environ["OPENAI_API_KEY"]

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing restaurant-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

# Initialize the system message for the chatbot
system_message = "You are a restaurant recommending chatbot that suggests one restaurant in Seattle from the restaurant database based on the criteria the user provides."

# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Load the SentenceTransformer model
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        lower_query = user_query.lower()
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        best_idx = similarities.argmax()
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in suggesting a restaurant.
    """
    try:
        user_message = f"Here is a local restaurant based on your information: {relevant_segment}"
        messages.append({"role": "user", "content": user_message})
        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=messages,
            max_tokens=150,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        output_text = response['choices'][0]['message']['content'].strip()
        messages.append({"role": "assistant", "content": output_text})
        return output_text
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

# Define a sample list of restaurants (replace this with your actual data source)
restaurants = [
    {
        "name": "Saffron Grill",
        "cuisine": "Middle Eastern",
        "price": "Moderate",
        "gluten_free": True,
        "vegan": False,
        "lactose_intolerant": True,
        "pescatarian": True,
        "allergen_friendly": False,
        "halal": True,
        "kosher": False,
        "vegetarian": True,
        "website": "https://www.saffrongrill.com"
    },
    {
        "name": "Tasty Thai",
        "cuisine": "Thai",
        "price": "Low",
        "gluten_free": False,
        "vegan": True,
        "lactose_intolerant": True,
        "pescatarian": True,
        "allergen_friendly": True,
        "halal": False,
        "kosher": False,
        "vegetarian": True,
        "website": "https://www.tastythai.com"
    },
    # Add more restaurant entries as needed
]

def find_restaurants(criteria):
    """
    Finds restaurants based on the given criteria.

    Parameters:
        criteria (dict): Dictionary containing filtering criteria.

    Returns:
        List of restaurants that match the criteria.
    """
    matching_restaurants = []
    for restaurant in restaurants:
        match = True
        for key, value in criteria.items():
            if key in restaurant:
                if isinstance(restaurant[key], bool):
                    if restaurant[key] != value:
                        match = False
                        break
                elif restaurant[key].lower() != value.lower():
                    match = False
                    break
        if match:
            matching_restaurants.append(restaurant)
    return matching_restaurants

def generate_recommendation(criteria):
    """
    Generates a recommendation based on the criteria.

    Parameters:
        criteria (dict): Dictionary containing filtering criteria.

    Returns:
        String with the recommendation or a message if no matches are found.
    """
    results = find_restaurants(criteria)
    if results:
        recommendations = []
        for result in results:
            recommendation = (
                f"Based on your criteria, I recommend {result['name']}. "
                f"It's a {result['price'].lower()} priced {result['cuisine'].lower()} restaurant with "
                f"{'gluten-free options' if result['gluten_free'] else 'no gluten-free options'}, "
                f"{'vegan options' if result['vegan'] else 'no vegan options'}, "
                f"{'lactose-intolerant options' if result['lactose_intolerant'] else 'no lactose-intolerant options'}, "
                f"{'pescatarian options' if result['pescatarian'] else 'no pescatarian options'}, "
                f"{'allergen-friendly options' if result['allergen_friendly'] else 'no allergen-friendly options'}, "
                f"{'halal options' if result['halal'] else 'no halal options'}, "
                f"{'kosher options' if result['kosher'] else 'no kosher options'}, "
                f"and { 'vegetarian options' if result['vegetarian'] else 'no vegetarian options'}. "
                f"Visit their website for more details: {result['website']}"
            )
            recommendations.append(recommendation)
        return "\n".join(recommendations)
    else:
        return "Sorry, no restaurants meet your criteria. Please try adjusting your filters."

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Give me your preferences..."
    
    if "restaurant" in question.lower():
        # Extract criteria from the question
        criteria = {}
        if "gluten-free" in question.lower():
            criteria["gluten_free"] = True
        if "vegan" in question.lower():
            criteria["vegan"] = True
        if "lactose-intolerant" in question.lower():
            criteria["lactose_intolerant"] = True
        if "pescatarian" in question.lower():
            criteria["pescatarian"] = True
        if "allergen-friendly" in question.lower():
            criteria["allergen_friendly"] = True
        if "halal" in question.lower():
            criteria["halal"] = True
        if "kosher" in question.lower():
            criteria["kosher"] = True
        if "vegetarian" in question.lower():
            criteria["vegetarian"] = True
        
        # Extract price and cuisine
        if "low" in question.lower():
            criteria["price"] = "Low"
        elif "moderate" in question.lower():
            criteria["price"] = "Moderate"
        elif "high" in question.lower():
            criteria["price"] = "High"
        
        if any(cuisine in question.lower() for cuisine in ["american", "indian", "middle eastern", "chinese", "italian", "thai", "hawaiian-korean", "japanese", "ethiopian", "pakistani", "mexican", "ghanaian", "vietnamese", "filipino", "spanish", "turkish"]):
            criteria["cuisine"] = next(cuisine for cuisine in ["american", "indian", "middle eastern", "chinese", "italian", "thai", "hawaiian-korean", "japanese", "ethiopian", "pakistani", "mexican", "ghanaian", "vietnamese", "filipino", "spanish", "turkish"] if cuisine in question.lower())
        
        response = generate_recommendation(criteria)
    else:
        relevant_segment = find_relevant_segment(question, segments)
        if not relevant_segment:
            return "Could not find specific information. Please refine your question."
        response = generate_response(question, relevant_segment)
    
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# Welcome to Ethical Eats Explorer!
## Your AI-driven assistant for restaurant recs in Seattle. Created by Saranya, Cindy, and Liana of the 2024 Kode With Klossy Seattle Camp.
"""
topics = """
### Please give me your restaurant preferences:
- Dietary Restrictions
- Cuisine Preferences (optional)
    - Cuisines: American, Indian, Middle Eastern, Chinese, Italian, Thai, Hawaiian-Korean, Japanese, Ethiopian, Pakistani, Mexican, Ghanaian, Vietnamese, Filipino, Spanish, Turkish
- Budget Preferences (Low: $0 - $20, Moderate: $20 - $30, High: $30+ - per person)
Please send your message in the format: "Could you give me a (cuisine) restaurant with (dietary restriction) options that is (budget) budget?"
"""

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Your question", placeholder="Give me your information...")
            answer = gr.Textbox(label="Explorer's Response", placeholder="Explorer will respond here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)

# Launch the Gradio app to allow user interaction
demo.launch(share=True)