Spaces:
Sleeping
Sleeping
Refine code to reduce number of outputs
Browse files
app.py
CHANGED
@@ -11,8 +11,12 @@ retrieval_model_name = 'all-MiniLM-L6-v2' # Using a pre-trained model from Hugg
|
|
11 |
|
12 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
13 |
|
14 |
-
# Update the system message to provide more guidance on generating a to-do list
|
15 |
-
system_message =
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Initial system message to set the behavior of the assistant
|
18 |
messages = [{"role": "system", "content": system_message}]
|
@@ -72,12 +76,12 @@ def generate_response(user_query):
|
|
72 |
# Append user's message to messages list
|
73 |
messages.append({"role": "user", "content": user_query})
|
74 |
|
75 |
-
# Call OpenAI API to generate a to-do list based on the user query
|
76 |
response = openai.ChatCompletion.create(
|
77 |
model="gpt-4",
|
78 |
messages=messages,
|
79 |
-
max_tokens=
|
80 |
-
temperature=0.
|
81 |
top_p=1,
|
82 |
frequency_penalty=0,
|
83 |
presence_penalty=0
|
|
|
11 |
|
12 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
13 |
|
14 |
+
# Update the system message to provide more guidance on generating a concise to-do list
|
15 |
+
system_message = (
|
16 |
+
"You are an assistant specialized in creating concise to-do lists based on user input. "
|
17 |
+
"Parse the input for tasks and generate a list of the most important actionable items. "
|
18 |
+
"Output the items in a numbered list, with a maximum of 3 items."
|
19 |
+
)
|
20 |
|
21 |
# Initial system message to set the behavior of the assistant
|
22 |
messages = [{"role": "system", "content": system_message}]
|
|
|
76 |
# Append user's message to messages list
|
77 |
messages.append({"role": "user", "content": user_query})
|
78 |
|
79 |
+
# Call OpenAI API to generate a concise to-do list based on the user query
|
80 |
response = openai.ChatCompletion.create(
|
81 |
model="gpt-4",
|
82 |
messages=messages,
|
83 |
+
max_tokens=150, # Adjusted max tokens to reduce output length
|
84 |
+
temperature=0.3,
|
85 |
top_p=1,
|
86 |
frequency_penalty=0,
|
87 |
presence_penalty=0
|