File size: 34,366 Bytes
e8b6064 7fc3ad4 e8b6064 7fc3ad4 e8b6064 7fc3ad4 e8b6064 7fc3ad4 e8b6064 7fc3ad4 e8b6064 7fc3ad4 e8b6064 7fc3ad4 e8b6064 7fc3ad4 e8b6064 b255490 e8b6064 b255490 e8b6064 7fc3ad4 e8b6064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 |
import sys
import os
import torch
from torch import nn
from transformers import (
AutoModel,
AutoProcessor,
AutoTokenizer,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
AutoModelForCausalLM,
BitsAndBytesConfig,
)
from PIL import Image
import torchvision.transforms.functional as TVF
import contextlib
from typing import Union, List
from pathlib import Path
from PyQt5.QtWidgets import (
QApplication,
QWidget,
QLabel,
QPushButton,
QFileDialog,
QLineEdit,
QTextEdit,
QComboBox,
QVBoxLayout,
QHBoxLayout,
QCheckBox,
QListWidget,
QListWidgetItem,
QMessageBox,
QSizePolicy,
)
from PyQt5.QtGui import QPixmap, QIcon
from PyQt5.QtCore import Qt
# Constants and Mappings
CLIP_PATH = "google/siglip-so400m-patch14-384"
CAPTION_TYPE_MAP = {
"Descriptive": [
"Write a descriptive caption for this image in a formal tone.",
"Write a descriptive caption for this image in a formal tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a formal tone.",
],
"Descriptive (Informal)": [
"Write a descriptive caption for this image in a casual tone.",
"Write a descriptive caption for this image in a casual tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a casual tone.",
],
"Training Prompt": [
"Write a stable diffusion prompt for this image.",
"Write a stable diffusion prompt for this image within {word_count} words.",
"Write a {length} stable diffusion prompt for this image.",
],
"MidJourney": [
"Write a MidJourney prompt for this image.",
"Write a MidJourney prompt for this image within {word_count} words.",
"Write a {length} MidJourney prompt for this image.",
],
"Booru tag list": [
"Write a list of Booru tags for this image.",
"Write a list of Booru tags for this image within {word_count} words.",
"Write a {length} list of Booru tags for this image.",
],
"Booru-like tag list": [
"Write a list of Booru-like tags for this image.",
"Write a list of Booru-like tags for this image within {word_count} words.",
"Write a {length} list of Booru-like tags for this image.",
],
"Art Critic": [
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
],
"Product Listing": [
"Write a caption for this image as though it were a product listing.",
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
"Write a {length} caption for this image as though it were a product listing.",
],
"Social Media Post": [
"Write a caption for this image as if it were being used for a social media post.",
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
"Write a {length} caption for this image as if it were being used for a social media post.",
],
}
EXTRA_OPTIONS_LIST = [
"If there is a person/character in the image you must refer to them as {name}.",
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
"Include information about lighting.",
"Include information about camera angle.",
"Include information about whether there is a watermark or not.",
"Include information about whether there are JPEG artifacts or not.",
"If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
"Do NOT include anything sexual; keep it PG.",
"Do NOT mention the image's resolution.",
"You MUST include information about the subjective aesthetic quality of the image from low to very high.",
"Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
"Do NOT mention any text that is in the image.",
"Specify the depth of field and whether the background is in focus or blurred.",
"If applicable, mention the likely use of artificial or natural lighting sources.",
"Do NOT use any ambiguous language.",
"Include whether the image is sfw, suggestive, or nsfw.",
"ONLY describe the most important elements of the image.",
]
CAPTION_LENGTH_CHOICES = (
["any", "very short", "short", "medium-length", "long", "very long"]
+ [str(i) for i in range(20, 261, 10)]
)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Determine the device to use (GPU if available, else CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type == "cuda":
torch_dtype = torch.bfloat16 # or torch.float16 based on compatibility
else:
torch_dtype = torch.float32
# Update autocast usage
if device.type == "cuda":
autocast = lambda: torch.amp.autocast(device_type='cuda', dtype=torch_dtype)
else:
autocast = contextlib.nullcontext # No autocasting on CPU
class ImageAdapter(nn.Module):
def __init__(
self,
input_features: int,
output_features: int,
ln1: bool,
pos_emb: bool,
num_image_tokens: int,
deep_extract: bool,
):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = (
None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
)
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(
mean=0.0, std=0.02
) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat(
(
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
),
dim=-1,
)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert (
x.shape[-1] == vision_outputs[-2].shape[-1] * 5
), f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(
torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1)
)
assert other_tokens.shape == (
x.shape[0],
2,
x.shape[2],
), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
def load_models(CHECKPOINT_PATH):
# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
assert (
CHECKPOINT_PATH / "clip_model.pt"
).exists(), f"clip_model.pt not found in {CHECKPOINT_PATH}"
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location="cpu")
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to(device)
# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
CHECKPOINT_PATH / "text_model", use_fast=True
)
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
# Add special tokens to the tokenizer
special_tokens_dict = {'additional_special_tokens': ['<|system|>', '<|user|>', '<|end|>', '<|eot_id|>']}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
print(f"Added {num_added_toks} special tokens.")
# LLM with 4-bit quantization
print("Loading LLM with 4-bit quantization")
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto",
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype=torch.float16
)
)
text_model.eval()
# Removed text_model.to(device)
# Resize token embeddings if new tokens were added
if num_added_toks > 0:
text_model.resize_token_embeddings(len(tokenizer))
# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(
clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False
)
image_adapter.load_state_dict(
torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")
)
image_adapter.eval()
image_adapter.to(device) # image_adapter is not quantized, so it's okay
return clip_processor, clip_model, tokenizer, text_model, image_adapter
@torch.no_grad()
def generate_caption(
input_image: Image.Image,
caption_type: str,
caption_length: Union[str, int],
extra_options: List[str],
name_input: str,
custom_prompt: str,
clip_model,
tokenizer,
text_model,
image_adapter,
) -> tuple:
if device.type == "cuda":
torch.cuda.empty_cache()
# If a custom prompt is provided, use it directly
if custom_prompt.strip() != "":
prompt_str = custom_prompt.strip()
else:
# 'any' means no length specified
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# Build prompt
if length is None:
map_idx = 0
elif isinstance(length, int):
map_idx = 1
elif isinstance(length, str):
map_idx = 2
else:
raise ValueError(f"Invalid caption length: {length}")
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
# Add extra options
if len(extra_options) > 0:
prompt_str += " " + " ".join(extra_options)
# Add name, length, word_count
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
# For debugging
print(f"Prompt: {prompt_str}")
# Preprocess image
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to(device)
# Embed image
# This results in Batch x Image Tokens x Features
with autocast():
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
embedded_images = image_adapter(vision_outputs.hidden_states)
embedded_images = embedded_images.to(device)
# Build the conversation
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt_str,
},
]
# Format the conversation
# The apply_chat_template method might not be available; handle accordingly
if hasattr(tokenizer, "apply_chat_template"):
convo_string = tokenizer.apply_chat_template(
convo, tokenize=False, add_generation_prompt=True
)
else:
# Simple concatenation if apply_chat_template is not available
convo_string = (
"<|system|>\n" + convo[0]["content"] + "\n<|end|>\n<|user|>\n" + convo[1]["content"] + "\n<|end|>\n"
)
assert isinstance(convo_string, str)
# Tokenize the conversation
# prompt_str is tokenized separately so we can do the calculations below
convo_tokens = tokenizer.encode(
convo_string, return_tensors="pt", add_special_tokens=False, truncation=False
).to(device)
prompt_tokens = tokenizer.encode(
prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False
).to(device)
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier
prompt_tokens = prompt_tokens.squeeze(0)
# Calculate where to inject the image
# Use the indices of the special tokens
end_token_id = tokenizer.convert_tokens_to_ids("<|end|>")
# Ensure end_token_id is valid
if end_token_id is None:
raise ValueError("The tokenizer does not recognize the '<|end|>' token. Please ensure special tokens are added.")
end_token_indices = (convo_tokens == end_token_id).nonzero(as_tuple=True)[0].tolist()
if len(end_token_indices) >= 2:
# The image is to be injected between the system message and the user prompt
preamble_len = end_token_indices[0] + 1 # Position after the first <|end|>
else:
preamble_len = 0 # Fallback to the start if tokens are missing
# Embed the tokens
convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(device))
# Construct the input
input_embeds = torch.cat(
[
convo_embeds[:, :preamble_len], # Part before the prompt
embedded_images.to(dtype=convo_embeds.dtype), # Image embeddings
convo_embeds[:, preamble_len:], # The prompt and anything after it
],
dim=1,
).to(device)
input_ids = torch.cat(
[
convo_tokens[:preamble_len].unsqueeze(0),
torch.full((1, embedded_images.shape[1]), tokenizer.pad_token_id, dtype=torch.long, device=device), # Dummy tokens for the image
convo_tokens[preamble_len:].unsqueeze(0),
],
dim=1,
).to(device)
attention_mask = torch.ones_like(input_ids).to(device)
# Debugging
print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")
# Generate the caption
generate_ids = text_model.generate(
input_ids=input_ids,
inputs_embeds=input_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
temperature=0.6,
top_p=0.9,
suppress_tokens=None,
)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] in [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|end|>")]:
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return prompt_str, caption.strip()
class CaptionApp(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle("JoyCaption Alpha Two")
self.setGeometry(100, 100, 1200, 1200)
# Set minimum size to maintain GUI consistency
self.setMinimumSize(1000, 700)
self.initUI()
# Initialize model variables
self.clip_processor = None
self.clip_model = None
self.tokenizer = None
self.text_model = None
self.image_adapter = None
# Initialize variables for selected images
self.input_dir = None
self.single_image_path = None
self.selected_image_path = None
# Theme variables
self.dark_mode = False
def initUI(self):
main_layout = QHBoxLayout()
# Left panel for parameters
left_panel = QVBoxLayout()
# Input directory selection
self.input_dir_button = QPushButton("Select Input Directory")
self.input_dir_button.clicked.connect(self.select_input_directory)
self.input_dir_label = QLabel("No directory selected")
left_panel.addWidget(self.input_dir_button)
left_panel.addWidget(self.input_dir_label)
# Single image selection
self.single_image_button = QPushButton("Select Single Image")
self.single_image_button.clicked.connect(self.select_single_image)
self.single_image_label = QLabel("No image selected")
left_panel.addWidget(self.single_image_button)
left_panel.addWidget(self.single_image_label)
# Caption Type
self.caption_type_combo = QComboBox()
self.caption_type_combo.addItems(CAPTION_TYPE_MAP.keys())
self.caption_type_combo.setCurrentText("Descriptive")
left_panel.addWidget(QLabel("Caption Type:"))
left_panel.addWidget(self.caption_type_combo)
# Caption Length
self.caption_length_combo = QComboBox()
self.caption_length_combo.addItems(CAPTION_LENGTH_CHOICES)
self.caption_length_combo.setCurrentText("long")
left_panel.addWidget(QLabel("Caption Length:"))
left_panel.addWidget(self.caption_length_combo)
# Extra Options
left_panel.addWidget(QLabel("Extra Options:"))
self.extra_options_checkboxes = []
for option in EXTRA_OPTIONS_LIST:
checkbox = QCheckBox(option)
self.extra_options_checkboxes.append(checkbox)
left_panel.addWidget(checkbox)
# Name Input
self.name_input_line = QLineEdit()
left_panel.addWidget(QLabel("Person/Character Name (if applicable):"))
left_panel.addWidget(self.name_input_line)
# Custom Prompt
self.custom_prompt_text = QTextEdit()
left_panel.addWidget(QLabel("Custom Prompt (optional):"))
left_panel.addWidget(self.custom_prompt_text)
# Checkpoint Path
self.checkpoint_path_line = QLineEdit()
self.checkpoint_path_line.setText("cgrkzexw-599808") # Update this path accordingly
left_panel.addWidget(QLabel("Checkpoint Path:"))
left_panel.addWidget(self.checkpoint_path_line)
# Load Models Button
self.load_models_button = QPushButton("Load Models")
self.load_models_button.clicked.connect(self.load_models)
left_panel.addWidget(self.load_models_button)
# Run Buttons
self.run_button = QPushButton("Generate Captions for All Images")
self.run_button.clicked.connect(self.generate_captions)
left_panel.addWidget(self.run_button)
self.caption_selected_button = QPushButton("Caption Selected Image")
self.caption_selected_button.clicked.connect(self.caption_selected_image)
self.caption_selected_button.setEnabled(False) # Disabled until an image is selected
left_panel.addWidget(self.caption_selected_button)
self.caption_single_button = QPushButton("Caption Single Image")
self.caption_single_button.clicked.connect(self.caption_single_image)
self.caption_single_button.setEnabled(False) # Disabled until a single image is selected
left_panel.addWidget(self.caption_single_button)
# Theme Toggle Button
self.toggle_theme_button = QPushButton("Toggle Dark Mode")
self.toggle_theme_button.clicked.connect(self.toggle_theme)
left_panel.addWidget(self.toggle_theme_button)
# Right panel for image display and captions
right_panel = QVBoxLayout()
# List widget for images
self.image_list_widget = QListWidget()
self.image_list_widget.itemClicked.connect(self.display_selected_image)
right_panel.addWidget(QLabel("Images:"))
right_panel.addWidget(self.image_list_widget)
# Label to display the selected image
self.selected_image_label = QLabel()
self.selected_image_label.setAlignment(Qt.AlignCenter)
# Set size policy to expanding to utilize available space
self.selected_image_label.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
self.selected_image_label.setMinimumSize(400, 400) # Set a reasonable minimum size
right_panel.addWidget(QLabel("Selected Image:"))
right_panel.addWidget(self.selected_image_label)
# Adjust stretch factors to allocate more space to the image label
main_layout.addLayout(left_panel, 2)
main_layout.addLayout(right_panel, 5) # Increased stretch factor for right_panel
self.setLayout(main_layout)
def toggle_theme(self):
if self.dark_mode:
self.setStyleSheet("") # Reset to default
self.dark_mode = False
else:
# Apply dark theme stylesheet with adjusted properties
self.setStyleSheet("""
QWidget {
background-color: #2E2E2E;
color: #FFFFFF;
font-family: Arial, sans-serif;
/* Removed font-size to prevent resizing */
}
QPushButton {
background-color: #3A3A3A;
color: #FFFFFF;
border: none;
padding: 5px; /* Keep padding minimal */
}
QPushButton:hover {
background-color: #555555;
}
QLabel {
color: #FFFFFF;
}
QLineEdit, QTextEdit, QComboBox {
background-color: #3A3A3A;
color: #FFFFFF;
border: 1px solid #555555;
padding: 5px; /* Keep padding minimal */
}
QListWidget {
background-color: #3A3A3A;
color: #FFFFFF;
border: 1px solid #555555;
}
QCheckBox {
color: #FFFFFF;
}
""")
self.dark_mode = True
def select_input_directory(self):
directory = QFileDialog.getExistingDirectory(self, "Select Input Directory")
if directory:
self.input_dir = Path(directory)
self.input_dir_label.setText(str(self.input_dir))
self.load_images()
else:
self.input_dir_label.setText("No directory selected")
self.input_dir = None
def select_single_image(self):
file_filter = "Image Files (*.jpg *.jpeg *.png *.bmp *.gif *.tiff)"
file_path, _ = QFileDialog.getOpenFileName(self, "Select Single Image", "", file_filter)
if file_path:
self.single_image_path = Path(file_path)
self.single_image_label.setText(str(self.single_image_path.name))
self.display_image(self.single_image_path)
self.caption_single_button.setEnabled(True)
else:
self.single_image_label.setText("No image selected")
self.single_image_path = None
self.caption_single_button.setEnabled(False)
def load_images(self):
# List of image file extensions
image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
# Collect all image files in the directory
self.image_files = [f for f in self.input_dir.iterdir() if f.suffix.lower() in image_extensions]
if not self.image_files:
QMessageBox.warning(self, "No Images", "No image files found in the selected directory.")
return
self.image_list_widget.clear()
for image_path in self.image_files:
item = QListWidgetItem(str(image_path.name))
pixmap = QPixmap(str(image_path))
if not pixmap.isNull():
# Increase thumbnail size
scaled_pixmap = pixmap.scaled(150, 150, Qt.KeepAspectRatio, Qt.SmoothTransformation)
icon = QIcon(scaled_pixmap)
item.setIcon(icon)
self.image_list_widget.addItem(item)
def display_selected_image(self, item):
# Get the selected image path
image_name = item.text()
image_path = self.input_dir / image_name
pixmap = QPixmap(str(image_path))
if not pixmap.isNull():
# Scale the pixmap to fit the label while preserving aspect ratio
scaled_pixmap = pixmap.scaled(
self.selected_image_label.size(),
Qt.KeepAspectRatio,
Qt.SmoothTransformation
)
self.selected_image_label.setPixmap(scaled_pixmap)
self.caption_selected_button.setEnabled(True)
self.selected_image_path = image_path
else:
self.selected_image_label.clear()
self.caption_selected_button.setEnabled(False)
self.selected_image_path = None
def display_image(self, image_path):
pixmap = QPixmap(str(image_path))
if not pixmap.isNull():
# Scale the pixmap to fit the label while preserving aspect ratio
scaled_pixmap = pixmap.scaled(
self.selected_image_label.size(),
Qt.KeepAspectRatio,
Qt.SmoothTransformation
)
self.selected_image_label.setPixmap(scaled_pixmap)
else:
self.selected_image_label.clear()
def load_models(self):
checkpoint_path = Path(self.checkpoint_path_line.text())
if not checkpoint_path.exists():
QMessageBox.warning(self, "Checkpoint Error", f"Checkpoint path does not exist: {checkpoint_path}")
return
try:
(
self.clip_processor,
self.clip_model,
self.tokenizer,
self.text_model,
self.image_adapter,
) = load_models(checkpoint_path)
QMessageBox.information(self, "Models Loaded", "Models have been loaded successfully.")
except Exception as e:
QMessageBox.critical(self, "Model Loading Error", f"An error occurred while loading models: {e}")
def collect_parameters(self):
# Collect parameters for caption generation
caption_type = self.caption_type_combo.currentText()
caption_length = self.caption_length_combo.currentText()
extra_options = [checkbox.text() for checkbox in self.extra_options_checkboxes if checkbox.isChecked()]
name_input = self.name_input_line.text()
custom_prompt = self.custom_prompt_text.toPlainText()
return caption_type, caption_length, extra_options, name_input, custom_prompt
def generate_captions(self):
# Determine which images to process
if hasattr(self, 'input_image_path') and self.input_image_path is not None:
image_paths = [self.input_image_path]
elif hasattr(self, 'image_files') and self.image_files:
image_paths = self.image_files
else:
QMessageBox.warning(self, "No Images", "Please select an image or directory containing images.")
return
if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]):
QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.")
return
# Collect parameters
caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters()
# Process each image
for image_path in image_paths:
print(f"\nProcessing image: {image_path}")
input_image = Image.open(image_path).convert("RGB")
try:
prompt_str, caption = generate_caption(
input_image,
caption_type,
caption_length,
extra_options,
name_input,
custom_prompt,
self.clip_model,
self.tokenizer,
self.text_model,
self.image_adapter,
)
# Save the caption in a text file with the same name as the image
caption_file = image_path.with_suffix('.txt')
with open(caption_file, 'w', encoding='utf-8') as f:
# Just write the caption
f.write(f"{caption}\n")
print(f"Caption saved to {caption_file}")
except Exception as e:
print(f"Error processing image {image_path}: {e}")
continue
QMessageBox.information(self, "Captions Generated", "Captions have been generated and saved.")
def caption_selected_image(self):
if not self.selected_image_path:
QMessageBox.warning(self, "No Image Selected", "Please select an image from the list.")
return
if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]):
QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.")
return
caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters()
print(f"\nProcessing image: {self.selected_image_path}")
input_image = Image.open(self.selected_image_path).convert("RGB")
try:
prompt_str, caption = generate_caption(
input_image,
caption_type,
caption_length,
extra_options,
name_input,
custom_prompt,
self.clip_model,
self.tokenizer,
self.text_model,
self.image_adapter,
)
# Save the caption in a text file with the same name as the image
caption_file = self.selected_image_path.with_suffix('.txt')
with open(caption_file, 'w', encoding='utf-8') as f:
# Just write the caption
f.write(f"{caption}\n")
print(f"Caption saved to {caption_file}")
except Exception as e:
print(f"Error processing image {self.selected_image_path}: {e}")
QMessageBox.critical(self, "Error", f"An error occurred: {e}")
return
QMessageBox.information(self, "Caption Generated", f"Caption has been generated and saved for {self.selected_image_path.name}.")
def caption_single_image(self):
if not self.single_image_path:
QMessageBox.warning(self, "No Image Selected", "Please select a single image.")
return
if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]):
QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.")
return
caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters()
print(f"\nProcessing image: {self.single_image_path}")
input_image = Image.open(self.single_image_path).convert("RGB")
try:
prompt_str, caption = generate_caption(
input_image,
caption_type,
caption_length,
extra_options,
name_input,
custom_prompt,
self.clip_model,
self.tokenizer,
self.text_model,
self.image_adapter,
)
# Save the caption in a text file with the same name as the image
caption_file = self.single_image_path.with_suffix('.txt')
with open(caption_file, 'w', encoding='utf-8') as f:
# Just write the caption
f.write(f"{caption}\n")
print(f"Caption saved to {caption_file}")
except Exception as e:
print(f"Error processing image {self.single_image_path}: {e}")
QMessageBox.critical(self, "Error", f"An error occurred: {e}")
return
QMessageBox.information(self, "Caption Generated", f"Caption has been generated and saved for {self.single_image_path.name}.")
def resizeEvent(self, event):
super().resizeEvent(event)
if self.selected_image_path and self.selected_image_label.pixmap():
pixmap = QPixmap(str(self.selected_image_path))
if not pixmap.isNull():
# Rescale the pixmap to fit the label size
scaled_pixmap = pixmap.scaled(
self.selected_image_label.size(),
Qt.KeepAspectRatio,
Qt.SmoothTransformation
)
self.selected_image_label.setPixmap(scaled_pixmap)
if __name__ == "__main__":
app = QApplication(sys.argv)
window = CaptionApp()
window.show()
sys.exit(app.exec_())
|