|
|
|
import sys |
|
import os |
|
import torch |
|
from torch import nn |
|
from transformers import ( |
|
AutoModel, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
PreTrainedTokenizer, |
|
PreTrainedTokenizerFast, |
|
AutoModelForCausalLM, |
|
BitsAndBytesConfig, |
|
) |
|
from PIL import Image |
|
import torchvision.transforms.functional as TVF |
|
import contextlib |
|
from typing import Union, List |
|
from pathlib import Path |
|
|
|
from PyQt5.QtWidgets import ( |
|
QApplication, |
|
QWidget, |
|
QLabel, |
|
QPushButton, |
|
QFileDialog, |
|
QLineEdit, |
|
QTextEdit, |
|
QComboBox, |
|
QVBoxLayout, |
|
QHBoxLayout, |
|
QCheckBox, |
|
QListWidget, |
|
QListWidgetItem, |
|
QMessageBox, |
|
QSizePolicy, |
|
) |
|
from PyQt5.QtGui import QPixmap, QIcon |
|
from PyQt5.QtCore import Qt |
|
|
|
|
|
CLIP_PATH = "google/siglip-so400m-patch14-384" |
|
CAPTION_TYPE_MAP = { |
|
"Descriptive": [ |
|
"Write a descriptive caption for this image in a formal tone.", |
|
"Write a descriptive caption for this image in a formal tone within {word_count} words.", |
|
"Write a {length} descriptive caption for this image in a formal tone.", |
|
], |
|
"Descriptive (Informal)": [ |
|
"Write a descriptive caption for this image in a casual tone.", |
|
"Write a descriptive caption for this image in a casual tone within {word_count} words.", |
|
"Write a {length} descriptive caption for this image in a casual tone.", |
|
], |
|
"Training Prompt": [ |
|
"Write a stable diffusion prompt for this image.", |
|
"Write a stable diffusion prompt for this image within {word_count} words.", |
|
"Write a {length} stable diffusion prompt for this image.", |
|
], |
|
"MidJourney": [ |
|
"Write a MidJourney prompt for this image.", |
|
"Write a MidJourney prompt for this image within {word_count} words.", |
|
"Write a {length} MidJourney prompt for this image.", |
|
], |
|
"Booru tag list": [ |
|
"Write a list of Booru tags for this image.", |
|
"Write a list of Booru tags for this image within {word_count} words.", |
|
"Write a {length} list of Booru tags for this image.", |
|
], |
|
"Booru-like tag list": [ |
|
"Write a list of Booru-like tags for this image.", |
|
"Write a list of Booru-like tags for this image within {word_count} words.", |
|
"Write a {length} list of Booru-like tags for this image.", |
|
], |
|
"Art Critic": [ |
|
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.", |
|
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.", |
|
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.", |
|
], |
|
"Product Listing": [ |
|
"Write a caption for this image as though it were a product listing.", |
|
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.", |
|
"Write a {length} caption for this image as though it were a product listing.", |
|
], |
|
"Social Media Post": [ |
|
"Write a caption for this image as if it were being used for a social media post.", |
|
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.", |
|
"Write a {length} caption for this image as if it were being used for a social media post.", |
|
], |
|
} |
|
|
|
EXTRA_OPTIONS_LIST = [ |
|
"If there is a person/character in the image you must refer to them as {name}.", |
|
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).", |
|
"Include information about lighting.", |
|
"Include information about camera angle.", |
|
"Include information about whether there is a watermark or not.", |
|
"Include information about whether there are JPEG artifacts or not.", |
|
"If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.", |
|
"Do NOT include anything sexual; keep it PG.", |
|
"Do NOT mention the image's resolution.", |
|
"You MUST include information about the subjective aesthetic quality of the image from low to very high.", |
|
"Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.", |
|
"Do NOT mention any text that is in the image.", |
|
"Specify the depth of field and whether the background is in focus or blurred.", |
|
"If applicable, mention the likely use of artificial or natural lighting sources.", |
|
"Do NOT use any ambiguous language.", |
|
"Include whether the image is sfw, suggestive, or nsfw.", |
|
"ONLY describe the most important elements of the image.", |
|
] |
|
|
|
CAPTION_LENGTH_CHOICES = ( |
|
["any", "very short", "short", "medium-length", "long", "very long"] |
|
+ [str(i) for i in range(20, 261, 10)] |
|
) |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
if device.type == "cuda": |
|
torch_dtype = torch.bfloat16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
|
|
if device.type == "cuda": |
|
autocast = lambda: torch.amp.autocast(device_type='cuda', dtype=torch_dtype) |
|
else: |
|
autocast = contextlib.nullcontext |
|
|
|
class ImageAdapter(nn.Module): |
|
def __init__( |
|
self, |
|
input_features: int, |
|
output_features: int, |
|
ln1: bool, |
|
pos_emb: bool, |
|
num_image_tokens: int, |
|
deep_extract: bool, |
|
): |
|
super().__init__() |
|
self.deep_extract = deep_extract |
|
|
|
if self.deep_extract: |
|
input_features = input_features * 5 |
|
|
|
self.linear1 = nn.Linear(input_features, output_features) |
|
self.activation = nn.GELU() |
|
self.linear2 = nn.Linear(output_features, output_features) |
|
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features) |
|
self.pos_emb = ( |
|
None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features)) |
|
) |
|
|
|
|
|
self.other_tokens = nn.Embedding(3, output_features) |
|
self.other_tokens.weight.data.normal_( |
|
mean=0.0, std=0.02 |
|
) |
|
|
|
def forward(self, vision_outputs: torch.Tensor): |
|
if self.deep_extract: |
|
x = torch.concat( |
|
( |
|
vision_outputs[-2], |
|
vision_outputs[3], |
|
vision_outputs[7], |
|
vision_outputs[13], |
|
vision_outputs[20], |
|
), |
|
dim=-1, |
|
) |
|
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" |
|
assert ( |
|
x.shape[-1] == vision_outputs[-2].shape[-1] * 5 |
|
), f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}" |
|
else: |
|
x = vision_outputs[-2] |
|
|
|
x = self.ln1(x) |
|
|
|
if self.pos_emb is not None: |
|
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}" |
|
x = x + self.pos_emb |
|
|
|
x = self.linear1(x) |
|
x = self.activation(x) |
|
x = self.linear2(x) |
|
|
|
|
|
other_tokens = self.other_tokens( |
|
torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1) |
|
) |
|
assert other_tokens.shape == ( |
|
x.shape[0], |
|
2, |
|
x.shape[2], |
|
), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}" |
|
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1) |
|
|
|
return x |
|
|
|
def get_eot_embedding(self): |
|
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0) |
|
|
|
def load_models(CHECKPOINT_PATH): |
|
|
|
print("Loading CLIP") |
|
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) |
|
clip_model = AutoModel.from_pretrained(CLIP_PATH) |
|
clip_model = clip_model.vision_model |
|
|
|
assert ( |
|
CHECKPOINT_PATH / "clip_model.pt" |
|
).exists(), f"clip_model.pt not found in {CHECKPOINT_PATH}" |
|
print("Loading VLM's custom vision model") |
|
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location="cpu") |
|
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()} |
|
clip_model.load_state_dict(checkpoint) |
|
del checkpoint |
|
|
|
clip_model.eval() |
|
clip_model.requires_grad_(False) |
|
clip_model.to(device) |
|
|
|
|
|
print("Loading tokenizer") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
CHECKPOINT_PATH / "text_model", use_fast=True |
|
) |
|
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}" |
|
|
|
|
|
special_tokens_dict = {'additional_special_tokens': ['<|system|>', '<|user|>', '<|end|>', '<|eot_id|>']} |
|
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) |
|
print(f"Added {num_added_toks} special tokens.") |
|
|
|
|
|
print("Loading LLM with 4-bit quantization") |
|
text_model = AutoModelForCausalLM.from_pretrained( |
|
CHECKPOINT_PATH / "text_model", |
|
device_map="auto", |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4', |
|
bnb_4bit_compute_dtype=torch.float16 |
|
) |
|
) |
|
text_model.eval() |
|
|
|
|
|
|
|
if num_added_toks > 0: |
|
text_model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
print("Loading image adapter") |
|
image_adapter = ImageAdapter( |
|
clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False |
|
) |
|
image_adapter.load_state_dict( |
|
torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu") |
|
) |
|
image_adapter.eval() |
|
image_adapter.to(device) |
|
|
|
return clip_processor, clip_model, tokenizer, text_model, image_adapter |
|
|
|
@torch.no_grad() |
|
def generate_caption( |
|
input_image: Image.Image, |
|
caption_type: str, |
|
caption_length: Union[str, int], |
|
extra_options: List[str], |
|
name_input: str, |
|
custom_prompt: str, |
|
clip_model, |
|
tokenizer, |
|
text_model, |
|
image_adapter, |
|
) -> tuple: |
|
if device.type == "cuda": |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if custom_prompt.strip() != "": |
|
prompt_str = custom_prompt.strip() |
|
else: |
|
|
|
length = None if caption_length == "any" else caption_length |
|
|
|
if isinstance(length, str): |
|
try: |
|
length = int(length) |
|
except ValueError: |
|
pass |
|
|
|
|
|
if length is None: |
|
map_idx = 0 |
|
elif isinstance(length, int): |
|
map_idx = 1 |
|
elif isinstance(length, str): |
|
map_idx = 2 |
|
else: |
|
raise ValueError(f"Invalid caption length: {length}") |
|
|
|
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx] |
|
|
|
|
|
if len(extra_options) > 0: |
|
prompt_str += " " + " ".join(extra_options) |
|
|
|
|
|
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length) |
|
|
|
|
|
print(f"Prompt: {prompt_str}") |
|
|
|
|
|
image = input_image.resize((384, 384), Image.LANCZOS) |
|
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0 |
|
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) |
|
pixel_values = pixel_values.to(device) |
|
|
|
|
|
|
|
with autocast(): |
|
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True) |
|
embedded_images = image_adapter(vision_outputs.hidden_states) |
|
embedded_images = embedded_images.to(device) |
|
|
|
|
|
convo = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful image captioner.", |
|
}, |
|
{ |
|
"role": "user", |
|
"content": prompt_str, |
|
}, |
|
] |
|
|
|
|
|
|
|
if hasattr(tokenizer, "apply_chat_template"): |
|
convo_string = tokenizer.apply_chat_template( |
|
convo, tokenize=False, add_generation_prompt=True |
|
) |
|
else: |
|
|
|
convo_string = ( |
|
"<|system|>\n" + convo[0]["content"] + "\n<|end|>\n<|user|>\n" + convo[1]["content"] + "\n<|end|>\n" |
|
) |
|
|
|
assert isinstance(convo_string, str) |
|
|
|
|
|
|
|
convo_tokens = tokenizer.encode( |
|
convo_string, return_tensors="pt", add_special_tokens=False, truncation=False |
|
).to(device) |
|
prompt_tokens = tokenizer.encode( |
|
prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False |
|
).to(device) |
|
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor) |
|
convo_tokens = convo_tokens.squeeze(0) |
|
prompt_tokens = prompt_tokens.squeeze(0) |
|
|
|
|
|
|
|
end_token_id = tokenizer.convert_tokens_to_ids("<|end|>") |
|
|
|
|
|
if end_token_id is None: |
|
raise ValueError("The tokenizer does not recognize the '<|end|>' token. Please ensure special tokens are added.") |
|
|
|
end_token_indices = (convo_tokens == end_token_id).nonzero(as_tuple=True)[0].tolist() |
|
if len(end_token_indices) >= 2: |
|
|
|
preamble_len = end_token_indices[0] + 1 |
|
else: |
|
preamble_len = 0 |
|
|
|
|
|
convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(device)) |
|
|
|
|
|
input_embeds = torch.cat( |
|
[ |
|
convo_embeds[:, :preamble_len], |
|
embedded_images.to(dtype=convo_embeds.dtype), |
|
convo_embeds[:, preamble_len:], |
|
], |
|
dim=1, |
|
).to(device) |
|
|
|
input_ids = torch.cat( |
|
[ |
|
convo_tokens[:preamble_len].unsqueeze(0), |
|
torch.full((1, embedded_images.shape[1]), tokenizer.pad_token_id, dtype=torch.long, device=device), |
|
convo_tokens[preamble_len:].unsqueeze(0), |
|
], |
|
dim=1, |
|
).to(device) |
|
attention_mask = torch.ones_like(input_ids).to(device) |
|
|
|
|
|
print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}") |
|
|
|
|
|
generate_ids = text_model.generate( |
|
input_ids=input_ids, |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
max_new_tokens=300, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
suppress_tokens=None, |
|
) |
|
|
|
|
|
generate_ids = generate_ids[:, input_ids.shape[1]:] |
|
if generate_ids[0][-1] in [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|end|>")]: |
|
generate_ids = generate_ids[:, :-1] |
|
|
|
caption = tokenizer.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
return prompt_str, caption.strip() |
|
|
|
class CaptionApp(QWidget): |
|
def __init__(self): |
|
super().__init__() |
|
self.setWindowTitle("JoyCaption Alpha Two") |
|
self.setGeometry(100, 100, 1200, 800) |
|
|
|
|
|
self.setMinimumSize(1000, 700) |
|
|
|
self.initUI() |
|
|
|
|
|
self.clip_processor = None |
|
self.clip_model = None |
|
self.tokenizer = None |
|
self.text_model = None |
|
self.image_adapter = None |
|
|
|
|
|
self.input_dir = None |
|
self.single_image_path = None |
|
self.selected_image_path = None |
|
|
|
|
|
self.dark_mode = False |
|
|
|
def initUI(self): |
|
main_layout = QHBoxLayout() |
|
|
|
|
|
left_panel = QVBoxLayout() |
|
|
|
|
|
self.input_dir_button = QPushButton("Select Input Directory") |
|
self.input_dir_button.clicked.connect(self.select_input_directory) |
|
self.input_dir_label = QLabel("No directory selected") |
|
left_panel.addWidget(self.input_dir_button) |
|
left_panel.addWidget(self.input_dir_label) |
|
|
|
|
|
self.single_image_button = QPushButton("Select Single Image") |
|
self.single_image_button.clicked.connect(self.select_single_image) |
|
self.single_image_label = QLabel("No image selected") |
|
left_panel.addWidget(self.single_image_button) |
|
left_panel.addWidget(self.single_image_label) |
|
|
|
|
|
self.caption_type_combo = QComboBox() |
|
self.caption_type_combo.addItems(CAPTION_TYPE_MAP.keys()) |
|
self.caption_type_combo.setCurrentText("Descriptive") |
|
left_panel.addWidget(QLabel("Caption Type:")) |
|
left_panel.addWidget(self.caption_type_combo) |
|
|
|
|
|
self.caption_length_combo = QComboBox() |
|
self.caption_length_combo.addItems(CAPTION_LENGTH_CHOICES) |
|
self.caption_length_combo.setCurrentText("long") |
|
left_panel.addWidget(QLabel("Caption Length:")) |
|
left_panel.addWidget(self.caption_length_combo) |
|
|
|
|
|
left_panel.addWidget(QLabel("Extra Options:")) |
|
self.extra_options_checkboxes = [] |
|
for option in EXTRA_OPTIONS_LIST: |
|
checkbox = QCheckBox(option) |
|
self.extra_options_checkboxes.append(checkbox) |
|
left_panel.addWidget(checkbox) |
|
|
|
|
|
self.name_input_line = QLineEdit() |
|
left_panel.addWidget(QLabel("Person/Character Name (if applicable):")) |
|
left_panel.addWidget(self.name_input_line) |
|
|
|
|
|
self.custom_prompt_text = QTextEdit() |
|
left_panel.addWidget(QLabel("Custom Prompt (optional):")) |
|
left_panel.addWidget(self.custom_prompt_text) |
|
|
|
|
|
self.checkpoint_path_line = QLineEdit() |
|
self.checkpoint_path_line.setText("cgrkzexw-599808") |
|
left_panel.addWidget(QLabel("Checkpoint Path:")) |
|
left_panel.addWidget(self.checkpoint_path_line) |
|
|
|
|
|
self.load_models_button = QPushButton("Load Models") |
|
self.load_models_button.clicked.connect(self.load_models) |
|
left_panel.addWidget(self.load_models_button) |
|
|
|
|
|
self.run_button = QPushButton("Generate Captions for All Images") |
|
self.run_button.clicked.connect(self.generate_captions) |
|
left_panel.addWidget(self.run_button) |
|
|
|
self.caption_selected_button = QPushButton("Caption Selected Image") |
|
self.caption_selected_button.clicked.connect(self.caption_selected_image) |
|
self.caption_selected_button.setEnabled(False) |
|
left_panel.addWidget(self.caption_selected_button) |
|
|
|
self.caption_single_button = QPushButton("Caption Single Image") |
|
self.caption_single_button.clicked.connect(self.caption_single_image) |
|
self.caption_single_button.setEnabled(False) |
|
left_panel.addWidget(self.caption_single_button) |
|
|
|
|
|
self.toggle_theme_button = QPushButton("Toggle Dark Mode") |
|
self.toggle_theme_button.clicked.connect(self.toggle_theme) |
|
left_panel.addWidget(self.toggle_theme_button) |
|
|
|
|
|
right_panel = QVBoxLayout() |
|
|
|
|
|
self.image_list_widget = QListWidget() |
|
self.image_list_widget.itemClicked.connect(self.display_selected_image) |
|
right_panel.addWidget(QLabel("Images:")) |
|
right_panel.addWidget(self.image_list_widget) |
|
|
|
|
|
self.selected_image_label = QLabel() |
|
self.selected_image_label.setAlignment(Qt.AlignCenter) |
|
|
|
|
|
self.selected_image_label.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) |
|
self.selected_image_label.setMinimumSize(400, 400) |
|
|
|
right_panel.addWidget(QLabel("Selected Image:")) |
|
right_panel.addWidget(self.selected_image_label) |
|
|
|
|
|
main_layout.addLayout(left_panel, 2) |
|
main_layout.addLayout(right_panel, 5) |
|
self.setLayout(main_layout) |
|
|
|
def toggle_theme(self): |
|
if self.dark_mode: |
|
self.setStyleSheet("") |
|
self.dark_mode = False |
|
else: |
|
|
|
self.setStyleSheet(""" |
|
QWidget { |
|
background-color: #2E2E2E; |
|
color: #FFFFFF; |
|
font-family: Arial, sans-serif; |
|
/* Removed font-size to prevent resizing */ |
|
} |
|
QPushButton { |
|
background-color: #3A3A3A; |
|
color: #FFFFFF; |
|
border: none; |
|
padding: 5px; /* Keep padding minimal */ |
|
} |
|
QPushButton:hover { |
|
background-color: #555555; |
|
} |
|
QLabel { |
|
color: #FFFFFF; |
|
} |
|
QLineEdit, QTextEdit, QComboBox { |
|
background-color: #3A3A3A; |
|
color: #FFFFFF; |
|
border: 1px solid #555555; |
|
padding: 5px; /* Keep padding minimal */ |
|
} |
|
QListWidget { |
|
background-color: #3A3A3A; |
|
color: #FFFFFF; |
|
border: 1px solid #555555; |
|
} |
|
QCheckBox { |
|
color: #FFFFFF; |
|
} |
|
""") |
|
self.dark_mode = True |
|
|
|
def select_input_directory(self): |
|
directory = QFileDialog.getExistingDirectory(self, "Select Input Directory") |
|
if directory: |
|
self.input_dir = Path(directory) |
|
self.input_dir_label.setText(str(self.input_dir)) |
|
self.load_images() |
|
else: |
|
self.input_dir_label.setText("No directory selected") |
|
self.input_dir = None |
|
|
|
def select_single_image(self): |
|
file_filter = "Image Files (*.jpg *.jpeg *.png *.bmp *.gif *.tiff)" |
|
file_path, _ = QFileDialog.getOpenFileName(self, "Select Single Image", "", file_filter) |
|
if file_path: |
|
self.single_image_path = Path(file_path) |
|
self.single_image_label.setText(str(self.single_image_path.name)) |
|
self.display_image(self.single_image_path) |
|
self.caption_single_button.setEnabled(True) |
|
else: |
|
self.single_image_label.setText("No image selected") |
|
self.single_image_path = None |
|
self.caption_single_button.setEnabled(False) |
|
|
|
def load_images(self): |
|
|
|
image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"] |
|
|
|
|
|
self.image_files = [f for f in self.input_dir.iterdir() if f.suffix.lower() in image_extensions] |
|
|
|
if not self.image_files: |
|
QMessageBox.warning(self, "No Images", "No image files found in the selected directory.") |
|
return |
|
|
|
self.image_list_widget.clear() |
|
for image_path in self.image_files: |
|
item = QListWidgetItem(str(image_path.name)) |
|
pixmap = QPixmap(str(image_path)) |
|
if not pixmap.isNull(): |
|
|
|
scaled_pixmap = pixmap.scaled(150, 150, Qt.KeepAspectRatio, Qt.SmoothTransformation) |
|
icon = QIcon(scaled_pixmap) |
|
item.setIcon(icon) |
|
self.image_list_widget.addItem(item) |
|
|
|
def display_selected_image(self, item): |
|
|
|
image_name = item.text() |
|
image_path = self.input_dir / image_name |
|
pixmap = QPixmap(str(image_path)) |
|
if not pixmap.isNull(): |
|
|
|
scaled_pixmap = pixmap.scaled( |
|
self.selected_image_label.size(), |
|
Qt.KeepAspectRatio, |
|
Qt.SmoothTransformation |
|
) |
|
self.selected_image_label.setPixmap(scaled_pixmap) |
|
self.caption_selected_button.setEnabled(True) |
|
self.selected_image_path = image_path |
|
else: |
|
self.selected_image_label.clear() |
|
self.caption_selected_button.setEnabled(False) |
|
self.selected_image_path = None |
|
|
|
def display_image(self, image_path): |
|
pixmap = QPixmap(str(image_path)) |
|
if not pixmap.isNull(): |
|
|
|
scaled_pixmap = pixmap.scaled( |
|
self.selected_image_label.size(), |
|
Qt.KeepAspectRatio, |
|
Qt.SmoothTransformation |
|
) |
|
self.selected_image_label.setPixmap(scaled_pixmap) |
|
else: |
|
self.selected_image_label.clear() |
|
|
|
def load_models(self): |
|
checkpoint_path = Path(self.checkpoint_path_line.text()) |
|
if not checkpoint_path.exists(): |
|
QMessageBox.warning(self, "Checkpoint Error", f"Checkpoint path does not exist: {checkpoint_path}") |
|
return |
|
|
|
try: |
|
( |
|
self.clip_processor, |
|
self.clip_model, |
|
self.tokenizer, |
|
self.text_model, |
|
self.image_adapter, |
|
) = load_models(checkpoint_path) |
|
QMessageBox.information(self, "Models Loaded", "Models have been loaded successfully.") |
|
except Exception as e: |
|
QMessageBox.critical(self, "Model Loading Error", f"An error occurred while loading models: {e}") |
|
|
|
def collect_parameters(self): |
|
|
|
caption_type = self.caption_type_combo.currentText() |
|
caption_length = self.caption_length_combo.currentText() |
|
extra_options = [checkbox.text() for checkbox in self.extra_options_checkboxes if checkbox.isChecked()] |
|
name_input = self.name_input_line.text() |
|
custom_prompt = self.custom_prompt_text.toPlainText() |
|
|
|
return caption_type, caption_length, extra_options, name_input, custom_prompt |
|
|
|
def generate_captions(self): |
|
|
|
if hasattr(self, 'input_image_path') and self.input_image_path is not None: |
|
image_paths = [self.input_image_path] |
|
elif hasattr(self, 'image_files') and self.image_files: |
|
image_paths = self.image_files |
|
else: |
|
QMessageBox.warning(self, "No Images", "Please select an image or directory containing images.") |
|
return |
|
|
|
if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]): |
|
QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.") |
|
return |
|
|
|
|
|
caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters() |
|
|
|
|
|
for image_path in image_paths: |
|
print(f"\nProcessing image: {image_path}") |
|
input_image = Image.open(image_path).convert("RGB") |
|
|
|
try: |
|
prompt_str, caption = generate_caption( |
|
input_image, |
|
caption_type, |
|
caption_length, |
|
extra_options, |
|
name_input, |
|
custom_prompt, |
|
self.clip_model, |
|
self.tokenizer, |
|
self.text_model, |
|
self.image_adapter, |
|
) |
|
|
|
|
|
caption_file = image_path.with_suffix('.txt') |
|
with open(caption_file, 'w', encoding='utf-8') as f: |
|
|
|
f.write(f"{caption}\n") |
|
|
|
print(f"Caption saved to {caption_file}") |
|
|
|
except Exception as e: |
|
print(f"Error processing image {image_path}: {e}") |
|
continue |
|
|
|
QMessageBox.information(self, "Captions Generated", "Captions have been generated and saved.") |
|
|
|
def caption_selected_image(self): |
|
if not self.selected_image_path: |
|
QMessageBox.warning(self, "No Image Selected", "Please select an image from the list.") |
|
return |
|
|
|
if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]): |
|
QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.") |
|
return |
|
|
|
caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters() |
|
|
|
print(f"\nProcessing image: {self.selected_image_path}") |
|
input_image = Image.open(self.selected_image_path).convert("RGB") |
|
|
|
try: |
|
prompt_str, caption = generate_caption( |
|
input_image, |
|
caption_type, |
|
caption_length, |
|
extra_options, |
|
name_input, |
|
custom_prompt, |
|
self.clip_model, |
|
self.tokenizer, |
|
self.text_model, |
|
self.image_adapter, |
|
) |
|
|
|
|
|
caption_file = self.selected_image_path.with_suffix('.txt') |
|
with open(caption_file, 'w', encoding='utf-8') as f: |
|
|
|
f.write(f"{caption}\n") |
|
|
|
print(f"Caption saved to {caption_file}") |
|
|
|
except Exception as e: |
|
print(f"Error processing image {self.selected_image_path}: {e}") |
|
QMessageBox.critical(self, "Error", f"An error occurred: {e}") |
|
return |
|
|
|
QMessageBox.information(self, "Caption Generated", f"Caption has been generated and saved for {self.selected_image_path.name}.") |
|
|
|
def caption_single_image(self): |
|
if not self.single_image_path: |
|
QMessageBox.warning(self, "No Image Selected", "Please select a single image.") |
|
return |
|
|
|
if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]): |
|
QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.") |
|
return |
|
|
|
caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters() |
|
|
|
print(f"\nProcessing image: {self.single_image_path}") |
|
input_image = Image.open(self.single_image_path).convert("RGB") |
|
|
|
try: |
|
prompt_str, caption = generate_caption( |
|
input_image, |
|
caption_type, |
|
caption_length, |
|
extra_options, |
|
name_input, |
|
custom_prompt, |
|
self.clip_model, |
|
self.tokenizer, |
|
self.text_model, |
|
self.image_adapter, |
|
) |
|
|
|
|
|
caption_file = self.single_image_path.with_suffix('.txt') |
|
with open(caption_file, 'w', encoding='utf-8') as f: |
|
|
|
f.write(f"{caption}\n") |
|
|
|
print(f"Caption saved to {caption_file}") |
|
|
|
except Exception as e: |
|
print(f"Error processing image {self.single_image_path}: {e}") |
|
QMessageBox.critical(self, "Error", f"An error occurred: {e}") |
|
return |
|
|
|
QMessageBox.information(self, "Caption Generated", f"Caption has been generated and saved for {self.single_image_path.name}.") |
|
|
|
def resizeEvent(self, event): |
|
super().resizeEvent(event) |
|
if self.selected_image_path and self.selected_image_label.pixmap(): |
|
pixmap = QPixmap(str(self.selected_image_path)) |
|
if not pixmap.isNull(): |
|
|
|
scaled_pixmap = pixmap.scaled( |
|
self.selected_image_label.size(), |
|
Qt.KeepAspectRatio, |
|
Qt.SmoothTransformation |
|
) |
|
self.selected_image_label.setPixmap(scaled_pixmap) |
|
|
|
if __name__ == "__main__": |
|
app = QApplication(sys.argv) |
|
window = CaptionApp() |
|
window.show() |
|
sys.exit(app.exec_()) |
|
|