Spaces:
Running
Running
Commit
·
851795f
1
Parent(s):
40f675a
fix
Browse files
app.py
CHANGED
@@ -7,15 +7,15 @@ from sklearn.preprocessing import MinMaxScaler
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
-
import
|
11 |
-
import
|
12 |
-
import
|
13 |
-
import matplotlib.font_manager as fm
|
14 |
-
import tempfile
|
15 |
-
import os
|
16 |
import yfinance as yf
|
17 |
import logging
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
# 設置日志
|
21 |
logging.basicConfig(level=logging.INFO,
|
@@ -81,22 +81,21 @@ def fetch_stock_categories():
|
|
81 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
82 |
return {}
|
83 |
|
84 |
-
#
|
85 |
class StockPredictor:
|
86 |
def __init__(self):
|
87 |
self.model = None
|
88 |
self.scaler = MinMaxScaler()
|
89 |
|
90 |
-
def prepare_data(self, df):
|
91 |
-
|
92 |
-
scaled_data = self.scaler.fit_transform(df[features])
|
93 |
|
94 |
X, y = [], []
|
95 |
for i in range(len(scaled_data) - 1):
|
96 |
X.append(scaled_data[i])
|
97 |
-
y.append(scaled_data[i+1
|
98 |
|
99 |
-
return np.array(X).reshape(-1, 1, len(
|
100 |
|
101 |
def build_model(self, input_shape):
|
102 |
model = Sequential([
|
@@ -104,13 +103,13 @@ class StockPredictor:
|
|
104 |
Dropout(0.2),
|
105 |
LSTM(50, activation='relu'),
|
106 |
Dropout(0.2),
|
107 |
-
Dense(
|
108 |
])
|
109 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
110 |
return model
|
111 |
|
112 |
-
def train(self, df):
|
113 |
-
X, y = self.prepare_data(df)
|
114 |
self.model = self.build_model((1, X.shape[2]))
|
115 |
history = self.model.fit(
|
116 |
X, y,
|
@@ -129,10 +128,7 @@ class StockPredictor:
|
|
129 |
next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
|
130 |
predictions.append(next_day[0])
|
131 |
|
132 |
-
current_data =
|
133 |
-
current_data[0] = next_day[0][0]
|
134 |
-
current_data[3] = next_day[0][1]
|
135 |
-
current_data = current_data.reshape(1, -1)
|
136 |
|
137 |
return np.array(predictions)
|
138 |
|
@@ -170,14 +166,16 @@ def update_category(category):
|
|
170 |
return {
|
171 |
stock_dropdown: gr.update(choices=stocks, value=None),
|
172 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
173 |
-
stock_plot: gr.update(value=None)
|
|
|
174 |
}
|
175 |
|
176 |
def update_stock(category, stock):
|
177 |
if not category or not stock:
|
178 |
return {
|
179 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
180 |
-
stock_plot: gr.update(value=None)
|
|
|
181 |
}
|
182 |
|
183 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
@@ -187,77 +185,69 @@ def update_stock(category, stock):
|
|
187 |
stock_items = get_stock_items(url)
|
188 |
return {
|
189 |
stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
|
190 |
-
stock_plot: gr.update(value=None)
|
|
|
191 |
}
|
192 |
return {
|
193 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
194 |
-
stock_plot: gr.update(value=None)
|
|
|
195 |
}
|
196 |
|
197 |
-
def predict_stock(category, stock, stock_item):
|
198 |
if not all([category, stock, stock_item]):
|
199 |
-
return gr.update(value=None)
|
200 |
|
201 |
try:
|
202 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
203 |
if item['類股'] == stock), None)
|
204 |
if not url:
|
205 |
-
return gr.update(value=None)
|
206 |
|
207 |
stock_items = get_stock_items(url)
|
208 |
stock_code = stock_items.get(stock_item, "")
|
209 |
|
210 |
if not stock_code:
|
211 |
-
return gr.update(value=None)
|
212 |
|
213 |
-
#
|
214 |
df = yf.download(stock_code, period="1y")
|
215 |
if df.empty:
|
216 |
raise ValueError("無法獲取股票數據")
|
217 |
|
218 |
# 預測
|
219 |
predictor = StockPredictor()
|
220 |
-
predictor.train(df)
|
221 |
|
222 |
-
last_data = predictor.scaler.transform(df.iloc[-1:][
|
223 |
predictions = predictor.predict(last_data[0], 5)
|
224 |
|
225 |
-
# 反轉預測結果
|
226 |
-
last_original = df[['Open', 'Close']].iloc[-1].values
|
227 |
-
predictions_original = predictor.scaler.inverse_transform(
|
228 |
-
np.hstack([predictions, np.zeros((predictions.shape[0], 4))])
|
229 |
-
)[:, :2]
|
230 |
-
all_predictions = np.vstack([last_original, predictions_original])
|
231 |
-
|
232 |
# 創建日期指標
|
233 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
234 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
235 |
|
236 |
-
# 繪圖
|
237 |
-
fig
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
246 |
-
textcoords="offset points", xytext=(0,10),
|
247 |
-
ha='center', va='bottom')
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
254 |
|
255 |
-
|
256 |
-
return gr.update(value=fig)
|
257 |
|
258 |
except Exception as e:
|
259 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
260 |
-
return gr.update(value=None)
|
261 |
|
262 |
# 初始化
|
263 |
setup_font()
|
@@ -284,28 +274,39 @@ with gr.Blocks() as demo:
|
|
284 |
label="股票",
|
285 |
value=None
|
286 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
predict_button = gr.Button("開始預測", variant="primary")
|
|
|
288 |
|
289 |
with gr.Row():
|
290 |
-
stock_plot = gr.
|
291 |
|
292 |
# 事件綁定
|
293 |
category_dropdown.change(
|
294 |
update_category,
|
295 |
inputs=[category_dropdown],
|
296 |
-
outputs=[stock_dropdown, stock_item_dropdown, stock_plot]
|
297 |
)
|
298 |
|
299 |
stock_dropdown.change(
|
300 |
update_stock,
|
301 |
inputs=[category_dropdown, stock_dropdown],
|
302 |
-
outputs=[stock_item_dropdown, stock_plot]
|
303 |
)
|
304 |
|
305 |
predict_button.click(
|
306 |
predict_stock,
|
307 |
-
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown],
|
308 |
-
outputs=[stock_plot]
|
309 |
)
|
310 |
|
311 |
# 啟動應用
|
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
+
from datetime import datetime, timedelta
|
11 |
+
import plotly.graph_objs as go
|
12 |
+
import plotly.io as pio
|
|
|
|
|
|
|
13 |
import yfinance as yf
|
14 |
import logging
|
15 |
+
import tempfile
|
16 |
+
import os
|
17 |
+
import matplotlib as mpl
|
18 |
+
import matplotlib.font_manager as fm
|
19 |
|
20 |
# 設置日志
|
21 |
logging.basicConfig(level=logging.INFO,
|
|
|
81 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
82 |
return {}
|
83 |
|
84 |
+
# 股票預測模型類別
|
85 |
class StockPredictor:
|
86 |
def __init__(self):
|
87 |
self.model = None
|
88 |
self.scaler = MinMaxScaler()
|
89 |
|
90 |
+
def prepare_data(self, df, selected_features):
|
91 |
+
scaled_data = self.scaler.fit_transform(df[selected_features])
|
|
|
92 |
|
93 |
X, y = [], []
|
94 |
for i in range(len(scaled_data) - 1):
|
95 |
X.append(scaled_data[i])
|
96 |
+
y.append(scaled_data[i+1])
|
97 |
|
98 |
+
return np.array(X).reshape(-1, 1, len(selected_features)), np.array(y)
|
99 |
|
100 |
def build_model(self, input_shape):
|
101 |
model = Sequential([
|
|
|
103 |
Dropout(0.2),
|
104 |
LSTM(50, activation='relu'),
|
105 |
Dropout(0.2),
|
106 |
+
Dense(input_shape[1])
|
107 |
])
|
108 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
109 |
return model
|
110 |
|
111 |
+
def train(self, df, selected_features):
|
112 |
+
X, y = self.prepare_data(df, selected_features)
|
113 |
self.model = self.build_model((1, X.shape[2]))
|
114 |
history = self.model.fit(
|
115 |
X, y,
|
|
|
128 |
next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
|
129 |
predictions.append(next_day[0])
|
130 |
|
131 |
+
current_data = next_day
|
|
|
|
|
|
|
132 |
|
133 |
return np.array(predictions)
|
134 |
|
|
|
166 |
return {
|
167 |
stock_dropdown: gr.update(choices=stocks, value=None),
|
168 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
169 |
+
stock_plot: gr.update(value=None),
|
170 |
+
status_output: gr.update(value="")
|
171 |
}
|
172 |
|
173 |
def update_stock(category, stock):
|
174 |
if not category or not stock:
|
175 |
return {
|
176 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
177 |
+
stock_plot: gr.update(value=None),
|
178 |
+
status_output: gr.update(value="")
|
179 |
}
|
180 |
|
181 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
|
|
185 |
stock_items = get_stock_items(url)
|
186 |
return {
|
187 |
stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
|
188 |
+
stock_plot: gr.update(value=None),
|
189 |
+
status_output: gr.update(value="")
|
190 |
}
|
191 |
return {
|
192 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
193 |
+
stock_plot: gr.update(value=None),
|
194 |
+
status_output: gr.update(value="")
|
195 |
}
|
196 |
|
197 |
+
def predict_stock(category, stock, stock_item, selected_features):
|
198 |
if not all([category, stock, stock_item]):
|
199 |
+
return gr.update(value=None), "請選擇產業類別、類股和股票"
|
200 |
|
201 |
try:
|
202 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
203 |
if item['類股'] == stock), None)
|
204 |
if not url:
|
205 |
+
return gr.update(value=None), "無法獲取類股網址"
|
206 |
|
207 |
stock_items = get_stock_items(url)
|
208 |
stock_code = stock_items.get(stock_item, "")
|
209 |
|
210 |
if not stock_code:
|
211 |
+
return gr.update(value=None), "無法獲取股票代碼"
|
212 |
|
213 |
+
# 下載股票數據,根據用戶選擇的時間範圍
|
214 |
df = yf.download(stock_code, period="1y")
|
215 |
if df.empty:
|
216 |
raise ValueError("無法獲取股票數據")
|
217 |
|
218 |
# 預測
|
219 |
predictor = StockPredictor()
|
220 |
+
predictor.train(df, selected_features)
|
221 |
|
222 |
+
last_data = predictor.scaler.transform(df.iloc[-1:][selected_features])
|
223 |
predictions = predictor.predict(last_data[0], 5)
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
# 創建日期指標
|
226 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
227 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
228 |
|
229 |
+
# 用 Plotly 繪圖
|
230 |
+
fig = go.Figure()
|
231 |
+
for i, feature in enumerate(selected_features):
|
232 |
+
fig.add_trace(go.Scatter(
|
233 |
+
x=date_labels,
|
234 |
+
y=np.hstack([df[feature].iloc[-1], predictions[:, i]]),
|
235 |
+
mode='lines+markers',
|
236 |
+
name=f'預測{feature}'
|
237 |
+
))
|
|
|
|
|
|
|
238 |
|
239 |
+
fig.update_layout(
|
240 |
+
title=f'{stock_item} 股價預測 (未來5天)',
|
241 |
+
xaxis_title='日期',
|
242 |
+
yaxis_title='股價',
|
243 |
+
template='plotly_dark'
|
244 |
+
)
|
245 |
|
246 |
+
return gr.update(value=pio.to_html(fig, full_html=False)), "預測成功"
|
|
|
247 |
|
248 |
except Exception as e:
|
249 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
250 |
+
return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
|
251 |
|
252 |
# 初始化
|
253 |
setup_font()
|
|
|
274 |
label="股票",
|
275 |
value=None
|
276 |
)
|
277 |
+
period_dropdown = gr.Dropdown(
|
278 |
+
choices=["1y", "6mo", "3mo", "1mo"],
|
279 |
+
label="抓取時間範圍",
|
280 |
+
value="1y"
|
281 |
+
)
|
282 |
+
features_checkbox = gr.CheckboxGroup(
|
283 |
+
choices=['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
|
284 |
+
label="選擇要用於預測的特徵",
|
285 |
+
value=['Open', 'Close']
|
286 |
+
)
|
287 |
predict_button = gr.Button("開始預測", variant="primary")
|
288 |
+
status_output = gr.Textbox(label="狀態", interactive=False)
|
289 |
|
290 |
with gr.Row():
|
291 |
+
stock_plot = gr.HTML(label="股價預測圖")
|
292 |
|
293 |
# 事件綁定
|
294 |
category_dropdown.change(
|
295 |
update_category,
|
296 |
inputs=[category_dropdown],
|
297 |
+
outputs=[stock_dropdown, stock_item_dropdown, stock_plot, status_output]
|
298 |
)
|
299 |
|
300 |
stock_dropdown.change(
|
301 |
update_stock,
|
302 |
inputs=[category_dropdown, stock_dropdown],
|
303 |
+
outputs=[stock_item_dropdown, stock_plot, status_output]
|
304 |
)
|
305 |
|
306 |
predict_button.click(
|
307 |
predict_stock,
|
308 |
+
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown, features_checkbox],
|
309 |
+
outputs=[stock_plot, status_output]
|
310 |
)
|
311 |
|
312 |
# 啟動應用
|